588 research outputs found

    Line bundles defined by the Schwarz function

    Full text link
    Cauchy and exponential transforms are characterized, and constructed, as canonical holomorphic sections of certain line bundles on the Riemann sphere defined in terms of the Schwarz function. A well known natural connection between Schwarz reflection and line bundles defined on the Schottky double of a planar domain is briefly discussed in the same context

    Singular values of weighted composition operators and second quantization

    No full text

    Conditioning moments of singular measures for entropy maximization II: Numerical examples

    Full text link
    If moments of singular measures are passed as inputs to the entropy maximization procedure, the optimization algorithm might not terminate. The framework developed in our previous paper demonstrated how input moments of measures, on a broad range of domains, can be conditioned to ensure convergence of the entropy maximization. Here we numerically illustrate the developed framework on simplest possible examples: measures with one-dimensional, bounded supports. Three examples of measures are used to numerically compare approximations obtained through entropy maximization with and without the conditioning step.Comment: Dedicated to Ed Saff on the occasion of his 70th birthda

    An Algebraic Perspective on Multivariate Tight Wavelet Frames. II

    Full text link
    Continuing our recent work we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of such polynomial sets allows us to improve the known upper bounds on the number of frame generators derived from box splines. In the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S. W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples
    corecore