509 research outputs found

    Damping of sound waves in superfluid nucleon-hyperon matter of neutron stars

    Full text link
    We consider sound waves in superfluid nucleon-hyperon matter of massive neutron-star cores. We calculate and analyze the speeds of sound modes and their damping times due to the shear viscosity and non-equilibrium weak processes of particle transformations. For that, we employ the dissipative relativistic hydrodynamics of a superfluid nucleon-hyperon mixture, formulated recently [M.E. Gusakov and E.M. Kantor, Phys. Rev. D78, 083006 (2008)]. We demonstrate that the damping times of sound modes calculated using this hydrodynamics and the ordinary (nonsuperfluid) one, can differ from each other by several orders of magnitude.Comment: 15 pages, 5 figures, Phys. Rev. D accepte

    Transport coefficients from the Boson Uehling-Uhlenbeck Equation

    Full text link
    We derive microscopic expressions for the bulk viscosity, shear viscosity and thermal conductivity of a quantum degenerate Bose gas above TCT_C, the critical temperature for Bose-Einstein condensation. The gas interacts via a contact potential and is described by the Uehling-Uhlenbeck equation. To derive the transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather than the Chapman-Enskog approach. This approach illuminates the link between transport coefficients and eigenvalues of the collision operator. We find that a method of summing the second order contributions using the fact that the relaxation rates have a known limit improves the accuracy of the computations. We numerically compute the shear viscosity and thermal conductivity for any boson gas that interacts via a contact potential. We find that the bulk viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.

    First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical trap for temperatures (0.6<T/Tc<1.20.6<T/T_{c}<1.2) and for systems with 10410^4 to 10810^8 particles. The second sound modes (which exist only below TcT_{c}) generally have a stronger temperature dependence than the first sound modes. The puzzling temperature variations of the sound modes near TcT_{c} recently observed at JILA in systems with 10310^3 particles match surprisingly well with those of the first and second sound modes of much larger systems.Comment: a shorten version, more discussions are given on the nature of the second sound. A long footnote on the recent work of Zaremba, Griffin, and Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode is included in fig.

    Bulk viscosity of superfluid neutron stars

    Full text link
    The hydrodynamics, describing dynamical effects in superfluid neutron stars, essentially differs from the standard one-fluid hydrodynamics. In particular, we have four bulk viscosity coefficients in the theory instead of one. In this paper we calculate these coefficients, for the first time, assuming they are due to non-equilibrium beta-processes (such as modified or direct Urca process). The results of our analysis are used to estimate characteristic damping times of sound waves in superfluid neutron stars. It is demonstrated that all four bulk viscosity coefficients lead to comparable dissipation of sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is published in Phys. Rev.

    Some mechanisms of "spontaneous" polarization of superfluid He-4

    Full text link
    Previously, a quantum "tidal" mechanism of polarization of the atoms of He-II was proposed, according to which, as a result of interatomic interaction, each atom of He-II acquires small fluctuating dipole and multipole moments, oriented chaotically on the average. In this work, we show that, in the presence of a temperature or density gradient in He-II, the originally chaotically oriented tidal dipole moments of the atoms become partially ordered, which results in volume polarization of He-II. It is found that the gravitational field of the Earth induces electric induction U =10(-7)V in He-II (for vessel dimensions of the order of 10 cm). We study also the connection of polarization and acceleration, and discuss a possible nature of the electric signal dU = kdT/2e observed by A.S. Rybalko in experiments with second sound.Comment: 13 pages; the calculation is extended and refined; v4: reconstructio

    The two-fluid model with superfluid entropy

    Full text link
    The two-fluid model of liquid helium is generalized to the case that the superfluid fraction has a small entropy content. We present theoretical arguments in favour of such a small superfluid entropy. In the generalized two-fluid model various sound modes of He  \;II are investigated. In a superleak carrying a persistent current the superfluid entropy leads to a new sound mode which we call sixth sound. The relation between the sixth sound and the superfluid entropy is discussed in detail.Comment: 22 pages, latex, published in Nuovo Cimento 16 D (1994) 37

    Mechanisms for Stable Sonoluminescence

    Get PDF
    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive timescale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed in experiments. However, recent sonoluminescence experiments show that in certain circumstances when the ambient gas concentration is low the bubble can be stable for days. This paper presents mechanisms leading to stability which predict parameter dependences in agreement with the sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files

    Topological phases and circulating states of Bose-Einstein condensates

    Get PDF
    We show that the quantum topological effect predicted by Aharonov and Casher (AC effect) [Phys. Rev. Lett. 53, 319 (1984)] may be used to create circulating states of magnetically trapped atomic Bose-Einstein condensates (BEC). A simple experimental setup is suggested based on a multiply connected geometry such as a toroidal trap or a magnetic trap pinched by a blue-detuned laser. We give numerical estimates of such effects within the current atomic BEC experiments, and point out some interesting properties of the associated quantized circulating states.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Contribution of the massive photon decay channel to neutrino cooling of neutron stars

    Get PDF
    We consider massive photon decay reactions via intermediate states of electron-electron-holes and proton-proton-holes into neutrino-antineutrino pairs in the course of neutron star cooling. These reactions may become operative in hot neutron stars in the region of proton pairing where the photon due to the Higgs-Meissner effect acquires an effective mass mγm_{\gamma} that is small compared to the corresponding plasma frequency. The contribution of these reactions to neutrino emissivity is calculated; it varies with the temperature and the photon mass as T3/2mγ7/2emγ/TT^{3/2}m_{\gamma}^{7/2} e^{-m_{\gamma}/T} for T<mγT < m_{\gamma}. Estimates show that these processes appear as extra efficient cooling channels of neutron stars at temperatures T(1091010)T \simeq (10^9-10^{10}) K.Comment: accepted to publication in Zh. Eksp. Teor. Fiz. (JETP

    Superconductor-to-Metal Transitions in Dissipative Chains of Mesoscopic Grains and Nanowires

    Get PDF
    The interplay of quantum fluctuations and dissipation in chains of mesoscopic superconducting grains is analyzed, and the results are also applied to nanowires. It is shown that in 1-d arrays of resistively shunted Josephson junctions, the superconducting-normal charge relaxation within the grains plays an important role. At zero temperature, two superconducting phases can exist, depending primarily on the strength of the dissipation. In the fully superconducting phase (FSC), each grain acts superconducting, and the coupling to the dissipative conduction is important. In the SC* phase, the dissipation is irrelevant at long wavelengths. The phase transitions between these two superconducting phases and the normal metallic phase may be either local or global, and possess rich and complex critical properties. These are inferred from both weak and strong coupling renormalization group analyses. At intermediate temperatures, near either superconductor-to-normal phase transition, there are regimes of super-metallic behavior, in which the resistivity first decreases gradually with decreasing temperature before eventually increasing as temperature is lowered further. The results on chains of Josephson junctions are extended to continuous superconducting nanowires and the subtle issue of whether these can exhibit an FSC phase is considered. Potential relevance to superconductor-metal transitions in other systems is also discussed.Comment: 42 pages, 14 figure
    corecore