401 research outputs found
Capability-based governance patterns over the product life-cycle: an agent-based model
In recent literature, there is disagreement over the temporal pattern of vertical governance of firms over the product life-cycle. We use a novel neo-Schumpeterian agent-based simulation model to investigate emerging patterns of vertical governance for different levels of imitability and substitutability of capabilities. We find that, in the mature phase of the product life-cycle, firms generally prefer vertical specialization. However, in the early phase, imitability and substitutability, in interplay, determine the governance form preferred. High imitability frustrates appropriation and thereby discourages integration for synergistic advantages. However, firms need not vertically specialize: under low substitutability, incompatibilities reduce the advantages of specialization. When both substitutability and imitability are low, firms can appropriate the value of their inventions and there is no combinatorial advantage of specialization, so firms predominantly integrate. If substitutability is high and imitability is low, the combinatorial advantage of specialization balances with the synergistic advantage of integration
Capability-based governance patterns over the product life-cycle
We investigate patterns of vertical governance over the product life-cycle as function of the capability regime properties imitability and substitutability. We use a novel neo-Schumpeterian model to study emerging governance patterns. We find that, in the era of incremental change, firms prefer vertical specialization. In the era of ferment, no governance form dominates. Imitability and substitutability, in interplay, determine the governance form preferred. High imitability frustrates appropriation and thereby integration for synergistic advantages. However, firms need not vertically specialize: under low substitutability, incompatibilities reduce the advantages of specialization. When both substitutability and imitability are low, firms can appropriate the value of their inventions and there is no combinatorial advantage of specialization, so firms predominantly integrate. If substitutability is high and imitability is low, the combinatorial advantage of specialization balances with the synergistic advantage of integration
Method for Measuring the Momentum-Dependent Relative Phase of the Superconducting Gap of High-Temperature Superconductors
The phase variation of the superconducting gap over the (normal) Fermi
surface of the high-temperature superconductors remains a significant
unresolved question. Is the phase of the gap constant, does it change sign, or
is it perhaps complex? A detailed answer to this question would provide
important constraints on various pairing mechanisms. Here we propose a new
method for measuring the relative gap PHASE on the Fermi surface which is
direct, is angle-resolved, and probes the bulk. The required experiments
involve measuring phonon linewidths in the normal and superconducting state,
with resolution available in current facilities. We primarily address the
La_1.85Sr_.15CuO_4 material, but also propose a more detailed study of a
specific phonon in Bi_2Sr_2CaCu_2O_8.Comment: 13 pages (revtex) + 5 figures (postscript-included), NSF-ITP-93-2
Polaronic optical absorption in electron-doped and hole-doped cuprates
Polaronic features similar to those previously observed in the photoinduced
spectra of cuprates have been detected in the reflectivity spectra of
chemically doped parent compounds of high-critical-temperature superconductors,
both -type and -type. In NdCuO these features, whose
intensities depend both on doping and temperature, include local vibrational
modes in the far infrared and a broad band centered at 1000 cm.
The latter band is produced by the overtones of two (or three) local modes and
is well described in terms of a small-polaron model, with a binding energy of
about 500 cm. Most of the above infrared features are shown to survive
in the metallic phase of NdCeCu0, BiSrCuO, and
YBaCuO, where they appear as extra-Drude peaks. The occurrence
of polarons is attributed to local modes strongly coupled to carriers, as shown
by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be
faxed upon reques
Spectral properties of the t-J model in the presence of hole-phonon interaction
We examine the effects of electron-phonon interaction on the dynamics of the
charge carriers doped in two-dimensional (2D) Heisenberg antiferromagnet. The
- model Hamiltonian with a Fr\"ohlich term which couples the holes to a
dispersionless (optical) phonon mode is considered for low doping
concentration. The evolution of the spectral density function, the density of
states, and the momentum distribution function of the holes with an increase of
the hole-phonon coupling constant is studied numerically. As the coupling
to a phonon mode increases the quasiparticle spectral weight decreases and a
``phonon satellite'' feature close to the quasi-particle peak becomes more
pronounced. Furthermore, strong electron-phonon coupling smears the
multi-magnon resonances (``string states'') in the incoherent part of the
spectral function. The jump in the momentum distribution function at the Fermi
surface is reduced without changing the hole pocket volume, thereby providing a
numerical verification of Luttinger theorem for this strongly interacting
system. The vertex corrections due to electron- phonon interaction are
negligible in spite of the fact that the ratio of the phonon frequency to the
effective bandwidth is not small.Comment: REVTeX, 20 pages, 9 figures, to be published in Phys. Rev. B (Nov. 1,
1996
Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate
When a system crosses a second-order phase transition on a finite timescale,
spontaneous symmetry breaking can cause the development of domains with
independent order parameters, which then grow and approach each other creating
boundary defects. This is known as Kibble-Zurek mechanism. Originally
introduced in cosmology, it applies both to classical and quantum phase
transitions, in a wide variety of physical systems. Here we report on the
spontaneous creation of solitons in Bose-Einstein condensates via the
Kibble-Zurek mechanism. We measure the power-law dependence of defects number
with the quench time, and provide a check of the Kibble-Zurek scaling with the
sonic horizon. These results provide a promising test bed for the determination
of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure
Influence of the pseudogap on the superconductivity-induced phonon renormalization in high-T superconductors
We investigate the influence of a d-density wave (DDW) gap on the
superconductivity-induced renormalization of phonon frequency and linewidth.
The results are discussed with respect to Raman and inelastic neutron
scattering experiments. It turns out that the DDW gap can enhance the range of
frequencies for phonon softening depending on the underlying band
structure. Moreover we show that an anisotropic 'd-wave' pseudogap can also
contribute to the q-dependent linewidth broadening of the 340cm phonon
in YBaCuO.Comment: 4 page
Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor
We analyze the effects of an electron-phonon interaction on the one-electron
spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case
of an Einstein phonon mode with various momentum-dependent electron-phonon
couplings and compare the structure produced in A(k,omega) with that obtained
from coupling to the magnetic pi-resonant mode. We find that if the strength of
the interactions are adjusted to give the same renormalization at the nodal
point, the differences in A(k,omega) are generally small but possibly
observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available
upon request
Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network
The network of patents connected by citations is an evolving graph, which
provides a representation of the innovation process. A patent citing another
implies that the cited patent reflects a piece of previously existing knowledge
that the citing patent builds upon. A methodology presented here (i) identifies
actual clusters of patents: i.e. technological branches, and (ii) gives
predictions about the temporal changes of the structure of the clusters. A
predictor, called the {citation vector}, is defined for characterizing
technological development to show how a patent cited by other patents belongs
to various industrial fields. The clustering technique adopted is able to
detect the new emerging recombinations, and predicts emerging new technology
clusters. The predictive ability of our new method is illustrated on the
example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of
patents is determined based on citation data up to 1991, which shows
significant overlap of the class 442 formed at the beginning of 1997. These new
tools of predictive analytics could support policy decision making processes in
science and technology, and help formulate recommendations for action
Neutron Scattering and the B_{1g} Phonon in the Cuprates
The momentum dependent lineshape of the out-of-phase oxygen vibration as
measured in recent neutron scattering measurements is investigated. Starting
from a microscopic coupling of the phonon vibration to a local crystal field,
the phonon lineshift and broadening is calculated as a function of transfered
momentum in the superconducting state of YBaCuO. It is shown
that the anisotropy of the density of states, superconducting energy gap, and
the electron-phonon coupling are all crucial in order to explain these
experiments.Comment: new figures and discussio
- …
