92 research outputs found

    Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity

    Get PDF
    Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.Animal science

    Ultrasensitive ctDNA detection for preoperative disease stratification in early-stage lung adenocarcinoma

    Get PDF
    Circulating tumor DNA (ctDNA) detection can predict clinical risk in early-stage tumors. However, clinical applications are constrained by the sensitivity of clinically validated ctDNA detection approaches. NeXT Personal is a whole-genome-based, tumor-informed platform that has been analytically validated for ultrasensitive ctDNA detection at 1–3 ppm of ctDNA with 99.9% specificity. Through an analysis of 171 patients with early-stage lung cancer from the TRACERx study, we detected ctDNA pre-operatively within 81% of patients with lung adenocarcinoma (LUAD), including 53% of those with pathological TNM (pTNM) stage I disease. ctDNA predicted worse clinical outcome, and patients with LUAD with <80 ppm preoperative ctDNA levels (the 95% limit of detection of a ctDNA detection approach previously published in TRACERx) experienced reduced overall survival compared with ctDNA-negative patients with LUAD. Although prospective studies are needed to confirm the clinical utility of the assay, these data show that our approach has the potential to improve disease stratification in early-stage LUADs

    THE INCIDENCE OF DIABETES AND ITS PREPONDERANCE AMONG WOMEN

    Full text link

    Is pancreatic transplantation justified?

    Full text link

    The genetics of diabetic complications

    Full text link

    Transitions in rangeland evaluations.

    No full text
    Transitions in rangeland evaluations.DOI:10.2458/azu_rangelands_v25i6_pyk

    Crested wheatgrass-cheatgrass seedling competition in a mixed-density design.

    No full text
    Plant competition experiments have historically used designs that are difficult to interpret due to confounding problems. Recently, designs based on a "response function" approach have been proposed and tested in various plant mixture settings. For this study, 3 species were used that are important in current revegetation practices in the Intermountain West. 'Nordan' ('Agropyron desertorum [Fish. ex Link] Shult.) and 'Hycrest' (A. cristatum [L.] Gaertn. X desertorum) crested wheatgrass are commonly-used revegetation species on rangelands susceptible to cheatgrass (Bromus tectorum L.) invasion, although little quantitative data exist that compare their competitive abilities. We evaluated the competitive ability of Hycrest and Nordan seedlings in 2-species mixtures with cheatgrass in a greenhouse study. Linear and nonlinear models were developed for a range of densities (130-520 seeds m-2) for each species to predict median above-ground biomass and tiller numbers and to further test the usefulness of this design for evaluating species to rehabilitate rangelands. In both experiments, increasing Hycrest and Nordan densities reduced their own biomass and tiller production while increasing Hycrest densities reduced cheatgrass biomass and tiller production. Nordan did not affect cheatgrass biomass and tiller production. However, increasing cheatgrass densities reduced Hycrest and Nordan biomass and tiller production, and its own biomass and tiller production. The competition index i.e. substitution rate, indicated that Hycrest seedlings were better competitors with cheatgrass than Nordan, although in all mixtures, cheatgrass plants were the superior competitors. Further field research using this design, where environmental inputs are less optimal and diverse, is needed to validate these results and to further evaluate the use of this approach in examining effects of intra- and interspecific competition
    corecore