9 research outputs found
Vortex Polarity Switching in Magnets with Surface Anisotropy
Vortex core reversal in magnetic particle is essentially influenced by a
surface anisotropy. Under the action of a perpendicular static magnetic field
the vortex core undergoes a shape deformationof pillow- or barrel-shaped type,
depending on the type of the surface anisotropy. This deformation plays a key
point in the switching mechanism: We predict that the vortex polarity switching
is accompanied (i) by a linear singularity in case of Heisenberg magnet with
bulk anisotropy only and (ii) by a point singularities in case of surface
anisotropy or exchange anisotropy. We study in details the switching process
using spin-lattice simulations and propose a simple analytical description
using a wired core model, which provides an adequate description of the Bloch
point statics, its dynamics and the Bloch point mediated switching process. Our
analytical predictions are confirmed by spin-lattice simulations for Heisenberg
magnet and micromagnetic simulations for nanomagnet with account of a dipolar
interaction.Comment: 17 pages, 15 figure
Two-photon Lithography for 3D Magnetic Nanostructure Fabrication
Ferromagnetic materials have been utilised as recording media within data
storage devices for many decades. Confinement of the material to a two
dimensional plane is a significant bottleneck in achieving ultra-high recording
densities and this has led to the proposition of three dimensional (3D)
racetrack memories that utilise domain wall propagation along nanowires.
However, the fabrication of 3D magnetic nanostructures of complex geometry is
highly challenging and not easily achievable with standard lithography
techniques. Here, by using a combination of two-photon lithography and
electrochemical deposition, we show a new approach to construct 3D magnetic
nanostructures of complex geometry. The magnetic properties are found to be
intimately related to the 3D geometry of the structure and magnetic imaging
experiments provide evidence of domain wall pinning at a 3D nanostructured
junction
Nematic shells: New insights in topology- And curvature-induced effects
Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrinsic curvature of the shell combined with the out-of-plane component of the director field gives rise to chirality effects. This interplay produces an effective energy term reminiscent of the chiral term in cholesteric liquid crystals, with the curvature tensor acting as a sort of anisotropic helicity. We discuss also how the different nature of the order parameter, a vector in ferromagnets and a tensor in nematics, yields different textures on surfaces with the same topology as the sphere. In particular, we show that the extrinsic curvature governs the ground state configuration on a nematic spherical shell, favouring two antipodal disclinations of charge +1 on small particles and four +1/2 disclinations of charge located at the vertices of a square inscribed in a great circle on larger particles
