1,800 research outputs found
Sphingosine kinases : emerging structure function insights
Sphingosine kinases (SK1 and SK2) catalyse the conversion of sphingosine into sphingosine 1-phosphate and control fundamental cellular processes, including cell survival, proliferation, differentiation, migration, and immune function. In this review, we highlight recent breakthroughs in the structural and functional characterisation of SK1 and these are contextualised by analysis of crystal structures for closely related prokaryotic lipid kinases. We identify a putative dimerisation interface and propose novel regulatory mechanisms governing structural plasticity induced by phosphorylation and interaction with phospholipids and proteins. Our analysis suggests that the catalytic function and regulation of the enzymes might be dependent on conformational mobility and it provides a roadmap for future interrogation of SK1 function and its role in physiology and disease
Second Order Perturbations of Flat Dust FLRW Universes with a Cosmological Constant
We summarize recent results concerning the evolution of second order
perturbations in flat dust irrotational FLRW models with . We
show that asymptotically these perturbations tend to constants in time, in
agreement with the cosmic no-hair conjecture. We solve numerically the second
order scalar perturbation equation, and very briefly discuss its all time
behaviour and some possible implications for the structure formation.Comment: 6 pages, 1 figure. to be published in "Proceedings of the 5th
Alexander Friedmann Seminar on Gravitation and Cosmology", Int. Journ. Mod.
Phys. A (2002). Macros: ws-ijmpa.cls, ws-p9-75x6-50.cl
Deep Drilling with the ANDRILL Program in Antarctica
ANDRILL (ANtarctic geological DRILLing) is a new
international, multi-disciplinary drilling program that targets
geological records that lie hidden beneath the icy blanket of
Antarctica. The primary objective is to investigate
Antarctica’s role in global environmental change over the
past sixty-fi ve million years, at various scales of age
resolution, and thereby enhance our understanding of
Antarctica’s potential response to future global changes.
Efforts to understand the infl uence of Antarctica on global
climate change require a fundamental knowledge of how the
Antarctic cryosphere (ice sheets, ice shelves, and sea ice)
has evolved, not only in recent times but also during earlier
geological periods when global temperature and atmospheric
CO2 levels were similar to what might be reached by the end
of this century. ANDRILL’s integrated science approach will
use stratigraphic drilling, coring, and multi-proxy core
analysis combined with geophysical surveys and numerical
modeling to study the Cenozoic history of Antarctic climate
and ice sheets, the evolution of polar biota, Antarctic
tectonism, and Antarctica’s role in the evolution of Earth’s
ocean–climate system
Quasar Proper Motions and Low-Frequency Gravitational Waves
We report observational upper limits on the mass-energy of the cosmological
gravitational-wave background, from limits on proper motions of quasars.
Gravitational waves with periods longer than the time span of observations
produce a simple pattern of apparent proper motions over the sky, composed
primarily of second-order transverse vector spherical harmonics. A fit of such
harmonics to measured motions yields a 95%-confidence limit on the mass-energy
of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the
closure density of the universe.Comment: 15 pages, 1 figure. Also available at
http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/index.htm
Cosmic Microwave Background anisotropies from second order gravitational perturbations
This paper presents a complete analysis of the effects of second order
gravitational perturbations on Cosmic Microwave Background anisotropies, taking
explicitly into account scalar, vector and tensor modes. We also consider the
second order perturbations of the metric itself obtaining them, for a universe
dominated by a collision-less fluid, in the Poisson gauge, by transforming the
known results in the synchronous gauge. We discuss the resulting second order
anisotropies in the Poisson gauge, and analyse the possible relevance of the
different terms. We expect that, in the simplest scenarios for structure
formation, the main effect comes from the gravitational lensing by scalar
perturbations, that is known to give a few percent contribution to the
anisotropies at small angular scales.Comment: 15 pages, revtex, no figures. Version to be published in Phys. Rev.
Nonlinear Effects in the Cosmic Microwave Background
Major advances in the observation and theory of cosmic microwave background
anisotropies have opened up a new era in cosmology. This has encouraged the
hope that the fundamental parameters of cosmology will be determined to high
accuracy in the near future. However, this optimism should not obscure the
ongoing need for theoretical developments that go beyond the highly successful
but simplified standard model. Such developments include improvements in
observational modelling (e.g. foregrounds, non-Gaussian features), extensions
and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic
effects, defects), and investigation of nonlinear effects. In addition to well
known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects,
further nonlinear effects have recently been identified. These include a
Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor
lensing, nonlinear Thomson scattering effects and a nonlinear shear effect.
Some of the nonlinear effects and their potential implications are discussed.Comment: Invited contribution to Relativistic Cosmology Symposium (celebrating
the 60th year of GFR Ellis); to appear Gen. Rel. Gra
A computational framework to emulate the human perspective in flow cytometric data analysis
Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation.
<p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods.
<p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics
Was Sinn Féin dying? A quantitative post-mortem of the party's decline and the emergence of Fianna Fáil
This article calls for a reappraisal of the consensus surrounding the split within Sinn Féin in 1926 that led to the foundation of Fianna Fáil. It demonstrates that quantitative factors cited to demonstrate Sinn Féin’s “terminal” decline – finances, cumann numbers, and election results – and to explain de Valera’s decision to leave Sinn Féin and establish a rival republican organisation, Fianna Fáil, do not provide sufficient objective grounds to explain the republican leader’s actions. This article demonstrates that Sinn Féin’s election results during the period in question (1923-1926) were encouraging and the decline in finances and cumann numbers can be explained by the fact that the base year used to compare progress was 1923, an election year. Moreover, this article compares the performance of Sinn Féin to the first five years of Fianna Fáil (1926-1931) to show that what has been interpreted as terminal decline can also be attributed to normal inter-election lulls in party activity. Correspondingly, subjective factors – e.g. personal rivalries, differences in ideology, organisational style and levels of patience in terms of achieving political power – were most likely the determining factors rather than organisational decline
A Texture Bestiary
Textures are topologically nontrivial field configurations which can exist in
a field theory in which a global symmetry group is broken to a subgroup
, if the third homotopy group \p3 of is nontrivial. We compute this
group for a variety of choices of and , revealing what symmetry breaking
patterns can lead to texture. We also comment on the construction of texture
configurations in the different models.Comment: 34 pages, plain Tex. (Minor corrections to an old paper.
Skewness in the Cosmic Microwave Background Anisotropy from Inflationary Gravity Wave Background
In the context of inflationary scenarios, the observed large angle anisotropy
of the Cosmic Microwave Background (CMB) temperature is believed to probe the
primordial metric perturbations from inflation. Although the perturbations from
inflation are expected to be gaussian random fields, there remains the
possibility that nonlinear processes at later epochs induce ``secondary''
non-gaussian features in the corresponding CMB anisotropy maps. The
non-gaussianity induced by nonlinear gravitational instability of scalar
(density) perturbations has been investigated in existing literature. In this
paper, we highlight another source of non-gaussianity arising out of higher
order scattering of CMB photons off the metric perturbations. We provide a
simple and elegant formalism for deriving the CMB temperature fluctuations
arising due to the Sachs-Wolfe effect beyond the linear order. In particular,
we derive the expression for the second order CMB temperature fluctuations. The
multiple scattering effect pointed out in this paper leads to the possibility
that tensor metric perturbation, i.e., gravity waves (GW) which do not exhibit
gravitational instability can still contribute to the skewness in the CMB
anisotropy maps. We find that in a flat universe, the skewness in
CMB contributed by gravity waves via multiple scattering effect is comparable
to that from the gravitational instability of scalar perturbations for equal
contribution of the gravity waves and scalar perturbations to the total rms CMB
anisotropy. The secondary skewness is found to be smaller than the cosmic
variance leading to the conclusion that inflationary scenarios do predict that
the observed CMB anisotropy should be statistically consistent with a gaussian
random distribution.Comment: 10 pages, Latex (uses revtex), 1 postscript figure included. Accepted
for publication in Physical Review
- …
