32 research outputs found

    Ecological Momentary Assessment and Intervention Principles for the Study of Awake Bruxism Behaviors, Part 2 : Development of a Smartphone Application for a Multicenter Investigation and Chronological Translation for the Polish Version

    Get PDF
    Objectives: The aim is to describe the process of translating the smartphone application BruxApp into Polish within the context of an ongoing multicenter project on awake bruxism (AB) epidemiology. Material and Methods: An ongoing cooperation involving 11 universities is based on the adoption of the smartphone-based EMA protocol to collect real time report of AB behaviors in the natural environment. The English version of BruxApp is adopted as a template for the multi-language translation, according to a step-by-step procedure led by mother-tongue experts in the field. A dedicated web platform for translation (viz., POEditor) is used. The process of translation into Polish is here described as an example. Results: There are two software versions available, viz., BruxApp and BruxApp Research. For both versions, back translation from Polish to English was performed to verify the accuracy of the translation procedure. The validity of the translation has been confirmed by the perfect agreement between the original and back-translated English versions, and the Polish version of BruxApp can thus be introduced in the clinical and research setting to get deeper into the study of AB epidemiology in Poland. Conclusions: As far as clinical studies are concerned, the described strategy to record data can be very useful -patients can acknowledge their habits, monitor changes over time, and implement remedial measures. In the field of research, BruxApp makes possible to collect and store a huge amount of data about the epidemiology of different forms of awake bruxism, both at the individual level and at the population level.Peer reviewe

    Can the concentration of citric acid affects its cytotoxicity and antimicrobial activity?

    Get PDF
    Background: There has been no unanimity concerning the ideal concentration of citric acid for safe use in clinical practice. This study evaluated the cytotoxicity and the antibacterial activity in infected dentinal tubules of 10% and 1% citric acid (CA) solutions. Methods: The cytotoxicity of CA solutions in DMEM (diluted 1/10, 1/100) was assessed in L-929 fibroblasts. A broth macrodilution method (MIC and MBC) was used to assess CA antibacterial concentration. The antimicrobial activity of CA solutions was also evaluated after their final rinse inside root canals in previously Enterococcus faecalis-contaminated dentinal tubules. Ten infected dentine samples were rinsed for 5 min with 5% NaOCl and subsequently with 1% citric acid for 3 min. Another 10 were rinsed with 5% NaOCl and 10% citric acid for 3 min; the remaining four specimens were utilized as positive controls. Two uncontaminated specimens were used as negative controls. After LIVE/DEAD BacLight staining, the samples were assessed using CLSM to analyze the percentage of residual live and dead cells. Results: Both undiluted and diluted CA solutions showed severe toxicity; no changes from normal morphology were displayed when diluted 1/100. The MIC and MBC of CA were 6.25 mg/mL and 12.50 mg/mL, respectively. CA solutions demonstrated significantly low levels of bacterial counts than the positive control group, reporting a value of 9.3% for the 10% solution versus the 1% solution (35.2%). Conclusions: Despite its valuable antimicrobial properties, the cytotoxic effects of citric acid should be considered during endodontic treatment

    Salivary MUC5B-mediated adherence (Ex Vivo) of Helicobacter pylori during acute stress

    Get PDF
    OBJECTIVE: Biochemical host defenses at mucosal sites, such as the oral cavity, play a key role in the regulation of microbial ecology and the prevention of infectious disease. These biochemical factors have distinct features, some of which benefit the host and some that benefit bacteria. We investigated the effects of acute stress on the salivary levels of the carbohydrate structure sulfo-Lewis (sulfo-Le), which is linked to the mucosal glycoprotein MUC5B. Sulfo-Le was recently identified as an adhesion molecule for Helicobacter pylori; therefore, we also measured saliva-mediated adherence (ex vivo) of H. pylori. The oral cavity is suspected to be involved in the transmission of H. pylori. METHODS: Saliva was collected from 17 undergraduates before (baseline), during (stress), and after (recovery) exposure to a video showing surgical procedures. In addition, blood pressure, an impedance cardiogram, and an electrocardiogram were recorded. RESULTS: During stressor exposure, participants reported increased state anxiety. In addition, stroke volume increased and heart rate decreased. The stressor induced a strong increase in salivary sulfo-Le concentration (U/ml), sulfo-Le output (U/min), sulfo-Le/total protein ratio (U/mg protein), and saliva-mediated adherence (ex vivo) of H. pylori. As expected, sulfo-Le concentration correlated with the adherence of H. pylori (r = 0.72, p < .05). It was demonstrated that the observed adherence was induced by MUC5B and that the carbohydrate structure sulfo-Le contributed to this process

    Human saliva and model saliva at bulk to adsorbed phases – similarities and differences

    Get PDF
    Human saliva, a seemingly simple aqueous fluid, is, in fact, an extraordinarily complex biocolloid that is not fully understood, despite many decades of study. Salivary lubrication is widely believed to be a signature of good oral health and is also crucial for speech, food oral processing and swallowing. However, saliva has been often neglected in food colloid research, primarily due to its high intra- to inter-individual variability and altering material properties upon collection and storage, when used as an ex vivo research material. In the last decade, colloid scientists have attempted designing model (i.e. ‘saliva mimicking fluid’) saliva formulations to understand saliva-food colloid interactions in an in vitro set up and its contribution on microstructural aspects, lubrication properties and sensory perception. In this Review, we critically examine the current state of knowledge on bulk and interfacial properties of model saliva in comparison to real human saliva and highlight how far such model salivary formulations can match the properties of real human saliva. Many, if not most, of these model saliva formulations share similarities with real human saliva in terms of biochemical compositions, including electrolytes, pH and concentrations of salivary proteins, such as α-amylase and highly glycosylated mucins. This, together with similarities between model and real saliva in terms of surface charge, has led to significant advancement in decoding colloidal interactions (bridging, depletion) of charged emulsion droplets and associated sensory perception in the oral phase. However, model saliva represents significant dissimilarity to real saliva in the lubricating properties. Based on in-depth examination of properties of mucins from animal sources (e.g. pig gastric mucins (PGM) or bovine submaxillary mucin (BSM)), we can recommend that BSM is currently the most optimal mucin source when attempting to replicate saliva based on surface adsorption and lubrication properties. Even though purification via dialysis or chromatographic techniques may influence various physicochemical properties of BSM, such as structure and surface adsorption, the lubricating properties of model saliva formulations based on BSM are generally superior and more reliable than PGM counterpart at orally relevant pH. Comparison of mucin-containing model saliva with ex vivo human salivary conditioning films suggests that mucin alone cannot replicate the lubricity of real human salivary pellicle. Mucin-based multi-layers containing mucin and oppositely charged polyelectrolytes may offer promising avenues in the future for engineering biomimetic salivary pellicle, however, this has not been explored in oral tribology experiments to date. Hence, there is a strong need for systematic studies with employment of model saliva formulations containing mucins with and without polycationic additives before a consensus on a standardized model saliva formulation can be achieved. Overall, this review provides a comprehensive framework on simulating saliva for a particular bulk or surface property when doing food oral processing experiments

    Surowce naturalne w stomatologii

    No full text
    Modern medicine used many methods of treatment; one of them is phytotherapy. It is documented that plants can not only prevent many diseases, but also cure diseases. Main activities of plant materials used in dentistry are anti-inflammatory, antibacterial, antiviral, decongestant, adtringent, anti-bleeding and regenerating. The natural materials used in dentistry are mainly in the form of lotions, tinctures, infusions, toothpaste, drops and gels. The most important group of active compounds in dental formulations of natural origin include essential oils, monoterpenoides, phenolic compounds, gums, resins, tannins, flavonoids, anthocyanins, carotenoids, chlorophyll, vitamins, elements such as especially zinc and minerals such as AlK(SO4)2. It occurs naturally and is used for control of bleeding, and as an antiseptic. The ideal antimicrobial agent should be effective in removing bacteria responsible for the periodontal disease process; to have the widest possible range of action, does not cause side effects and have a prolonged activity in the oral cavity. Accordingly natural products particularly as essential oils and phenol compounds can, fulfill these tasks
    corecore