668 research outputs found

    Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral-zone activity

    Get PDF
    Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion

    Van Hove Excitons and High-Tc_c Superconductivity: VIIIC Dynamic Jahn-Teller Effects vs Spin-Orbit Coupling in the LTO Phase of La2x_{2-x}Srx_xCuO4_4

    Full text link
    The possible role of the van Hove singularity (vHs) in stabilizing the low-temperature orthorhombic (LTO) phase transition in La2x_{2-x}\-Srx_x\-CuO4_ 4 (LSCO) is discussed. It is found that the vHs can drive a structural distortion in two different ways, either due to spin-orbit coupling or to dynamic Jahn-Teller (JT) effects. This paper discusses the latter effect in some detail. It is shown that a model Hamiltonian introduced earlier to describe the coupled electron -- octahedral tilt motions (`cageons') has a series of phase transitions, from a high-temperature disordered JT phase (similar to the high-temperature tetragonal phase of LSCO) to an intermediate temperature dynamic JT phase, of average orthorhombic symmetry (the LTO phase) to a low temperature static JT phase (the low temperature tetragonal phase). For some parameter values, the static JT phase is absent.Comment: 28 pages plain TeX, 14 figures available upon request, NU-MARKIEWIC-93-0

    The Ising spin glass in finite dimensions: a perturbative study of the free energy

    Full text link
    Replica field theory is used to study the n-dependent free energy of the Ising spin glass in a first order perturbative treatment. Large sample-to-sample deviations of the free energy from its quenched average prove to be Gaussian, independently of the special structure of the order parameter. The free energy difference between the replica symmetric and (infinite level) replica symmetry broken phases is studied in details: the line n(T) where it is zero coincides with the Almeida-Thouless line for d>8. The dimensional domain 6<d<8 is more complicated, and several scenarios are possible.Comment: 23 page

    Dielectric response due to stochastic motion of pinned domain walls

    Full text link
    We study the contribution of stochastic motion of a domain wall (DW) to the dielectric AC susceptibility for low frequencies. Using the concept of waiting time distributions, which is related to the energy landscape of the DW in a disordered medium, we derive the power-law behavior of the complex susceptibility observed recently in some ferroelectrics below Curie temperature.Comment: 5 pages, 2 figures, revtex

    Van Hove Exciton-Cageons and High-Tc_c Superconductivity: VIIID Solitons and Nonlinear Dynamics

    Full text link
    The low-temperature orthorhombic (LTO) phase transition in La2x_{2-x}Srx_xCuO4_4 can be interpreted as a dynamic Jahn-Teller effect, in which the degenerate electronic states are associated with the large densities of states at the two van Hove singularities. The equations describing this phase are strongly nonlinear. This paper illustrates some consequences of the nonlinearity, by presenting a rich variety of exact nonlinear wave solutions for the model. Of particular interest are soliton lattice solutions: arrays of domain walls separating regions of local low-temperature tetragonal (LTT) symmetry. These arrays have a {\it macroscopic} average symmetry higher than LTT. These lattices can display either orthorhombic (`orthons') or tetragonal (`tetrons') symmetry, and can serve as models for a microscopic description of the dynamic JT LTO and high-temperature tetragonal phases, respectively.Comment: 17 pages plain TeX, 14 figures available upon reques

    Test of Universality in the Ising Spin Glass Using High Temperature Graph Expansion

    Full text link
    We calculate high-temperature graph expansions for the Ising spin glass model with 4 symmetric random distribution functions for its nearest neighbor interaction constants J_{ij}. Series for the Edwards-Anderson susceptibility \chi_EA are obtained to order 13 in the expansion variable (J/(k_B T))^2 for the general d-dimensional hyper-cubic lattice, where the parameter J determines the width of the distributions. We explain in detail how the expansions are calculated. The analysis, using the Dlog-Pad\'e approximation and the techniques known as M1 and M2, leads to estimates for the critical threshold (J/(k_B T_c))^2 and for the critical exponent \gamma in dimensions 4, 5, 7 and 8 for all the distribution functions. In each dimension the values for \gamma agree, within their uncertainty margins, with a common value for the different distributions, thus confirming universality.Comment: 13 figure

    Molecular-field approach to the spin-Peierls transition in CuGeO_3

    Full text link
    We present a theory for the spin-Peierls transition in CuGeO_3. We map the elementary excitations of the dimerized chain (solitons) on an effective Ising model. Inter-chain coupling (or phonons) then introduce a linear binding potential between a pair of soliton and anti-soliton, leading to a finite transition temperature. We evaluate, as a function of temperature, the order parameter, the singlet-triplet gap, the specific heat, and the susceptibility and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to a first-order phase transition. We point out, that the famous scaling law \sim\delta^{2/3} of the triplet gap is a simple consequence of the linear binding potential between pairs of solitons and anti-solitons in dimerized spin chains.Comment: 7.1 pages, figures include

    Nonadiabatic Approach to Spin-Peierls Transitions via Flow Equations

    Full text link
    The validity of the adiabatic approach to spin-Peierls transitions is assessed. An alternative approach is developed which maps the initial magneto-elastic problem to an effective magnetic problem only. Thus the equivalence of magneto-elastic solitons and magnetic spinons is shown. No soft phonon is required for the transition. Temperature dependent couplings are predicted in accordance with the analysis of experimental data.Comment: Latex, 4 pages, Phys. Rev. B, Rap. Comm. in press final version containing some clarification

    Magnetic Resonance in the Spin-Peierls compound αNaV2O5\alpha'-NaV_2O_5

    Full text link
    We present results from magnetic resonance measurements for 75-350 GHz in α\alpha'-NaV2_{2}O5_{5}. The temperature dependence of the integrated intensity indicates that we observe transitions in the excited state. A quantitative description gives resonances in the triplet state at high symmetry points of the excitation spectrum of this Spin-Peierls compound. This energy has the same temperature dependence as the Spin-Peierls gap. Similarities and differences with the other inorganic compound CuGeO3_{3} are discussed.Comment: 2 pages, REVTEX, 3 figures. to be published in Phys.Rev.

    Volume contraction at the Jahn-Teller transition of LaMnO3_3

    Full text link
    We have studied the volume collapse of LaMnO3_3 at the Jahn- Teller (JT) transition temperature TJT_{JT}=750 K which has recently been found in high temperature powder x- ray and neutron diffraction experiments. We construct a model Hamiltonian involving the pseudospin of Mn3+^{3+} eg_g states, the staggered JT distortion and the volume strain coordinate. We show that the anharmonic coupling between these primary and secondary order parameters leads to the first order JT phase transition associated with a comparatively large reduction of the unit cell volume of Δ\DeltaV/V\simeq 102^{-2}. We explain the temperature dependence of JT distortions and volume strain and discuss the volume change as function of the anharmonic coupling constant. A continuous change to a second order transition as function of model parameters is obtained. This behaviour is also observed under Ba doping.Comment: 5 pages, 4 figure
    corecore