79 research outputs found

    A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study

    Get PDF
    Introduction: Prevalence of obesity and associated diseases, including type 2 diabetes mellitus, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), are increasing. Underlying mechanisms, especially in humans, are unclear. Bariatric surgery provides the unique opportunity to obtain biopsies and portal vein blood-samples. Methods: The BARIA Study aims to assess how microbiota and their metabolites affect transcription in key tissues and clinical outcome in obese subjects and how baseline anthropometric and metabolic characteristics determine weight loss and glucose homeostasis after bariatric surgery. We phenotype patients undergoing bariatric surgery (predominantly laparoscopic Roux-en-Y gastric bypass), before weight loss, with biometrics, dietary and psychological questionnaires, mixed meal test (MMT) and collect fecal-samples and intra-operative biopsies from liver, adipose tissues and jejunum. We aim to include 1500 patients. A subset (approximately 25%) will undergo intra-operative portal vein blood-sampling. Fecal-samples are analyzed with shotgun metagenomics and targeted metabolomics, fasted and postprandial plasma-samples are subjected to metabolomics, and RNA is extracted from the tissues for RNAseq-analyses. Data will be integrated using state-of-the-art neuronal networks and metabolic modeling. Patient follow-up will be ten years. Results: Preoperative MMT of 170 patients were analysed and clear differences were observed in glucose homeostasis between individuals. Repeated MMT in 10 patients showed satisfactory intra-individual reproducibility, with differences in plasma glucose, insulin and triglycerides within 20% of the mean difference. Conclusion: The BARIA study can add more understanding in how gut-microbiota affect metabolism, especially with regard to obesity, glucose metabolism and NAFLD. Identification of key factors may provide diagnostic and therapeutic leads to control the obesity-associated disease epidemic

    Optically active histidin-2-ylidene stabilised gold nanoparticles

    Get PDF
    Drawing from the natural amino acid chiral pool, L and D histidines were utilized as chiral NHC ligands in the synthesis of NHC-stabilized chiroptical gold nanoparticles. Centrifugal size selection afforded monodisperse gold nanoparticles which display mirrored signals in CD spectroscopy

    One-step synthesis and XPS investigations of chiral NHC–Au(0)/Au(i) nanoparticles

    Get PDF
    Although N-heterocyclic carbenes (NHCs) have been demonstrated as suitable ligands for the stabilisation of gold nanoparticles (AuNPs) through a variety of methods, the manner in which such AuNPs form is yet to be fully elucidated. We report a simple and fast one-step synthesis of uniform chiral (L/D)-histidin-2-ylidene stabilised gold nanoparticles using the organometallic Au(I) complex as a well defined starting material. The resulting nanoparticles have an average size of 2.35 ± 0.43 nm for the L analog whereas an average size of 2.25 ± 0.39 nm was found for the D analog. X-ray photoelectron spectroscopy analyses reveal the presence of Au(I) and Au(0) in all NHC stabilised AuNPs. In contrast, measured X-ray photoelectron spectra of dodecanethiol protected gold nanoparticles showed only the presence of a Au(0) species. This observation leads us to postulate that AuNPs synthesised from organometallic NHC–Au(I) complexes exhibit a monolayer of Au(I) surrounding a Au(0) core. This work highlights the importance of synthetic method choice for NHC-stabilized AuNPs, as this could determine Au oxidation states and resulting AuNP properties such as catalytic activities and stabilities

    AmLit / On Engagement: A Postscript on Critical Practice in Times of Crisis

    No full text

    AmLit / Longing to Belong: Disease, Nostalgia, and Exile in Ling Ma's Severance

    No full text

    Luminescence of Dimeric T1(I) Complexes: Metal-Metal Interaction in the Electronically Excited State

    Get PDF
    Dimeric diethyldithiocarbamatethallium(I) [Et 2NCS2Tl]2 shows a red emission at λmax=608 nm which undergoes a huge Stokes shift with regard to the excitation maximum at λ=246 nm. It is suggested that the emission originates from a sp excited state which is characterized by strong metal-metal bonding
    corecore