139,235 research outputs found

    Abell 2111: An Optical and Radio Study of the Richest Butcher-Oemler Cluster

    Full text link
    We present an in-depth analysis of the Butcher-Oemler cluster A2111, including new optical spectroscopy plus a deep Very Large Array (VLA) radio continuum observation. These are combined with optical imaging from the Sloan Digital Sky Survey (SDSS) to assess the activity and properties of member galaxies. Prior X-ray studies have suggested A2111 is a head-on cluster merger, a dynamical state which might be connected to the high level of activity inferred from its blue fraction. We are able to directly assess this claim, using our spectroscopic data to identify 95 cluster members among 196 total galaxy spectra. These galaxy velocities do not themselves provide significant evidence for the merger interpretation, however they are consistent with it provided the system is viewed near the time of core passage and at a viewing angle >~30 degrees different from the merger axis. The SDSS data allow us to confirm the high blue fraction for A2111, f_b = 0.15 +/- 0.03 based on photometry alone and f_b = 0.23 +/- 0.03 using spectroscopic data to remove background galaxies. We are able to detect 175 optical sources from the SDSS in our VLA radio data, of which 35 have redshift information. We use the SDSS photometry to determine photometric redshifts for the remaining 140 radio-optical sources. In total we identify up to 26 cluster radio galaxies, 14 of which have spectroscopic redshifts. The optical spectroscopy and radio data reveal a substantial population of dusty starbursts within the cluster. The high blue fraction and prevalence of star formation is consistent with the hypothesis that dynamically-active clusters are associated with more active member galaxies than relaxed clusters.Comment: To appear in AJ; 53 pages including 10 figures and several long table

    X-raying Galaxies: A Chandra Legacy

    Get PDF
    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete X-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and AGN feedback -- the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our Galaxy. The gas is concentrated around the Galactic bulge and disk on scales of a few kpc. The column density of chemically-enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the Galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The X-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed X-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circum-galactic medium, hence the evolution of galaxies.Comment: Refereed review article to be published in Proceedings of the National Academy of Science

    A study of line widths and kinetic parameters of ions in the solar corona

    Full text link
    Solar extreme-ultraviolet (EUV) lines emitted by highly charged ions have been extensively studied to discuss the issue of coronal heating and solar wind acceleration. Based on observations of the polar corona by the SUMER/SOHO spectrometer, this paper investigates the relation between the line widths and kinetic parameters of ions. It is shown that there exists a strongly linear correlation between two variables (σ/λ)2(\sigma/\lambda)^2 and M1M^{-1}, where σ\sigma, λ\lambda and MM are the half-width of the observed line profile at 1/e1/\sqrt{e}, the wavelength and the ion mass, respectively. The Pearson product-moment correlation coefficients exceed 0.9. This finding tends to suggest that the ions from a given height of polar corona have a common temperature and a common non-thermal velocity in terms of existing equation. The temperature and non-thermal velocity are obtained by linear least-square fit. The temperature is around 2.82.8 MK at heights of 57'' and 102''. The non-thermal velocity is typical 21.6 km s1^{-1} at height of 57'' and 25.2 km s1^{-1} at height of 102''.Comment: 7 pages, 2 figures, accepted for publication in Astrophysics and Space Scienc

    ROSAT HRI Detection of the 16 ms Pulsar PSR J0537-6910 Inside SNR N157B

    Full text link
    Based on a deep ROSAT HRI observation, we have detected a pulsed signal in the 0.1-2 keV band from PSR J0537-6910 --- the recently discovered pulsar associated with the supernova remnant N157B in the Large Magellanic Cloud. The measured pulse period 0.01611548182 ms (+- 0.02 ns), Epoch MJD 50540.5, gives a revised linear spin-down rate of 5.1271×1014ss15.1271 \times 10^{-14} s s^{-1}, slightly greater than the previously derived value. The narrow pulse shape (FWHM = 10% duty cycle) in the ROSAT band resembles those seen in both XTE and ASCA data (> 2 keV), but there is also marginal evidence for an interpulse. This ROSAT detection enables us to locate the pulsar at R.A., Dec (J2000) = 5h37m47s.2,6910235^h37^m47^s.2, -69^\circ 10' 23''. With its uncertainty 3\sim 3'', this position coincides with the centroid of a compact X-ray source. But the pulsed emission accounts for only about 10% of the source luminosity 2×1036ergs1\sim 2 \times 10^{36} ergs^{-1} in the 0.1-2 keV band. These results support our previous suggestions: (1) The pulsar is moving at a high velocity (103km/s\sim 10^3 km/s); (2) A bow shock, formed around the pulsar, is responsible for most of the X-ray emission from the source; (3) A collimated outflow from the bow shock region powers a pulsar wind nebula that accounts for an elongated non-thermal radio and X-ray feature to the northwest of the pulsar.Comment: 6 pages including 3 figures. To be published in ApJ

    Laser Mode Bifurcations Induced by PT\mathcal{PT}-Breaking Exceptional Points

    Full text link
    A laser consisting of two independently-pumped resonators can exhibit mode bifurcations that evolve out of the exceptional points (EPs) of the linear system at threshold. The EPs are non-Hermitian degeneracies occurring at the parity/time-reversal (PT\mathcal{PT}) symmetry breaking points of the threshold system. Above threshold, the EPs become bifurcations of the nonlinear zero-detuned laser modes, which can be most easily observed by making the gain saturation intensities in the two resonators substantially different. Small pump variations can then switch abruptly between different laser behaviors, e.g. between below-threshold and PT\mathcal{PT}-broken single-mode operation.Comment: 4 pages, 3 figure

    Influences of magnetic coupling process on the spectrum of a disk covered by the corona

    Full text link
    Recently, much attention has been paid to the magnetic coupling (MC) process, which is supported by very high emissivity indexes observed in Seyfert 1 galaxy MCG-6-30-15 and GBHC XTE J1650-500. But the rotational energy transferred from a black hole is simply assumed to be radiated away from the surrounding accretion disk in black-body spectrum, which is obviously not consistent with the observed hard power-law X-ray spectra. We intend to introduce corona into the MC model to make it more compatible with the observations. We describe the model and the procedure of a simplified Monte Carlo simulation, compare the output spectra in the cases with and without the MC effects, and discuss the influences of three parameters involved in the MC process on the output spectra. It is shown that the MC process augments radiation fluxes in the UV or X-ray band. The emergent spectrum is affected by the BH spin and magnetic field strength at the BH horizon, while it is almost unaffected by the radial profile of the magnetic field at the disk. Introducing corona into the MC model will improve the fitting of the output spectra from AGNs and GBHCs.Comment: 15 pages, 5 figures, accepted by A&

    Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity

    Full text link
    A new extended Dicke model, which includes atom-atom interactions and a driving classical laser field, is established for a Bose-Einstein condensate inside an ultrahigh-finesse optical cavity. A feasible experimental setup with a strong atom-field coupling is proposed, where most parameters are easily controllable and thus the predicted second-order superradiant-normal phase transition may be detected by measuring the ground-state atomic population. More intriguingly, a novel second-order phase transition from the superradiant phase to the \textquotedblleft Mott" phase is also revealed. In addition, a rich and exotic phase diagram is presented.Comment: 4 pages; figures 1 and 3 are modified; topos are correcte

    A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor

    Full text link
    The discovery of cuprate high Tc superconductors has inspired searching for unconventional su- perconductors in magnetic materials. A successful recipe has been to suppress long-range order in a magnetic parent compound by doping or high pressure to drive the material towards a quantum critical point, which is replicated in recent discovery of iron-based high TC superconductors. The long-range magnetic order coexisting with superconductivity has either a small magnetic moment or low ordering temperature in all previously established examples. Here we report an exception to this rule in the recently discovered potassium iron selenide. The superconducting composition is identified as the iron vacancy ordered K0.8Fe1.6Se2 with Tc above 30 K. A novel large moment 3.31 {\mu}B/Fe antiferromagnetic order which conforms to the tetragonal crystal symmetry has the unprecedentedly high an ordering temperature TN = 559 K for a bulk superconductor. Staggeredly polarized electronic density of states thus is suspected, which would stimulate further investigation into superconductivity in a strong spin-exchange field under new circumstance.Comment: 5 figures, 5 pages, and 2 tables in pdf which arXiv.com cannot tak
    corecore