240 research outputs found

    Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study.

    Get PDF
    BACKGROUND: Age-related changes of the immune system, termed immunosenescence, may underlie the increased risk of infections and morbidity in the elderly. Little is known about the effects of acute exercise on peripheral immune parameters in octogenarians. Therefore, we investigated acute exercise-induced changes in phenotype and function of the immune system in octogenarians participating in the 2013 edition of the Nijmegen Four Days Marches. Blood sampling was performed at baseline and immediately after 4 days of the walking exercise (30 km/day). A comprehensive set of adaptive and innate immune traits were enumerated and analyzed by flow-cytometry. Peripheral blood mononuclear cells, isolated before and after walking were stimulated with LPS and supernatants were analysed for IL-1β, IL-6, IL-8 and TNF-α concentrations by ELISA. CMV serostatus was determined by ELISA. RESULTS: The walking exercise induced a clear leucocytosis with numerical increases of granulocytes, monocytes and lymphocytes. These exercise-induced changes were most profound in CMV seropositive subjects. Within lymphocytes, numerical increases of particularly CD4+ T cells were noted. Further T cell differentiation analysis revealed profound increases of naïve CD4+ T cells, including naïve Treg. Significant increases were also noted for CD4+ memory T cell subsets. In contrast, only slight increases in naïve and memory CD8+ T cell subsets were detected. Exercise did not affect markers of immune exhaustion in memory T cell subsets. NK cells demonstrated a numerical decline and a change in cellular composition with a selective decrease of the mature CD56(dim) NK cells. The latter was seen in CMV seronegative subjects only. Also, a higher IL-6 and IL-8 production capacity of LPS-stimulated PBMC was seen after walking. CONCLUSION: In this exceptional cohort of octogenarian walkers, acute exercise induced changes in immune cell numbers and functions. A clear response of CD4+ T cells, rather than CD8+ T cells or NK cells was noted. Remarkably, the response to exercise within the CD4+ T cell compartment was dominated by naïve CD4+ subsets

    Connectomic profile and clinical phenotype in newly diagnosed glioma patients.

    Get PDF
    Gliomas are primary brain tumors, originating from the glial cells in the brain. In contrast to the more traditional view of glioma as a localized disease, it is becoming clear that global brain functioning is impacted, even with respect to functional communication between brain regions remote from the tumor itself. However, a thorough investigation of glioma-related functional connectomic profiles is lacking. Therefore, we constructed functional brain networks using functional MR scans of 71 glioma patients and 19 matched healthy controls using the automated anatomical labelling (AAL) atlas and interregional Pearson correlation coefficients. The frequency distributions across connectivity values were calculated to depict overall connectomic profiles and quantitative features of these distributions (full-width half maximum (FWHM), peak position, peak height) were calculated. Next, we investigated the spatial distribution of the connectomic profile. We defined hub locations based on the literature and determined connectivity (1) between hubs, (2) between hubs and non-hubs, and (3) between non-hubs. Results show that patients had broader and flatter connectivity distributions compared to controls. Spatially, glioma patients particularly showed increased connectivity between non-hubs and hubs. Furthermore, connectivity distributions and hub-non-hub connectivity differed within the patient group according to tumor grade, while relating to Karnofsky performance status and progression-free survival. In conclusion, newly diagnosed glioma patients have globally altered functional connectomic profiles, which mainly affect hub connectivity and relate to clinical phenotypes. These findings underscore the promise of using connectomics as a future biomarker in this patient population

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Robust motion correction for myocardial T1 and extracellular volume mapping by principle component analysis-based groupwise image registration

    Get PDF
    Background: Myocardial tissue characterization by MR T1 and extracellular volume (ECV) mapping has demonstratedclinical value. The modified Look–Locker inversion recovery (MOLLI) sequence is a standard mapping technique, but itsquality can be negatively affected by motion.Purpose: To develop a robust motion correction method for T1 and ECV mapping.Study Type: Retrospective analysis of clinical data.Population: Fifty patients who were referred to cardiac MR exam for T 1 mapping.Field Strength/Sequence: 3.0T cardiac MRI with precontrast and postcontrast MOLLI acquisition of the left ventricle(LV).Assessment: A groupwise registration method based on principle component analysis (PCA) was developed to registerall MOLLI frames simultaneously. The resulting T 1 and ECV maps were compared to those from the original andmotion-corrected MOLLI with pairwise registration, in terms of standard deviation (SD) error.Statistical Test: Paired variables were compared using the Wilcoxon signed-rank test.Results: The groupwise registration method demonstrated improved registration performance compared to pairwiseregistration, with the T 1 SD error reduced from 31 6 20 msec to 26 6 15 msec (P </p

    Extracellular volume-guided late gadolinium enhancement analysis for non-ischemic cardiomyopathy: The Women's Interagency HIV Study

    Get PDF
    Background Quantification of non-ischemic myocardial scar remains a challenge due to the patchy diffuse nature of fibrosis. Extracellular volume (ECV) to guide late gadolinium enhancement (LGE) analysis may achieve a robust scar assessment. Methods Three cohorts of 80 non-ischemic-training, 20 non-ischemic-validation, and 10 ischemic-validation were prospectively enrolled and underwent 3.0 Tesla cardiac MRI. An ECV cutoff to differentiate LGE scar from non-scar was identified in the training cohort from the receiver-operating characteristic curve analysis, by comparing the ECV value against the visually-determined presence/absence of the LGE scar at the highest signal intensity (SI) area of the mid-left ventricle (LV) LGE. Based on the ECV cutoff, an LGE semi-automatic threshold of n-times of standard-deviation (n-SD) above the remote-myocardium SI was optimized in the individual cases ensuring correspondence between LGE and ECV images. The inter-method agreement of scar amount in comparison with manual (for non-ischemic) or full-width half-maximum (FWHM, for ischemic) was assessed. Intra- and inter-observer reproducibility were investigated in a randomly chosen subset of 40 non-ischemic and 10 ischemic cases. Results The non-ischemic groups were all female with the HIV positive rate of 73.8% (training) and 80% (validation). The ischemic group was all male with reduced LV function. An ECV cutoff of 31.5% achieved optimum performance (sensitivity: 90%, specificity: 86.7% in training; sensitivity: 100%, specificity: 81.8% in validation dataset). The identified n-SD threshold varied widely (range 3 SD-18 SD), and was independent of scar amount (beta = -0.01, p = 0.92). In the non-ischemic cohorts, results suggested that the manual LGE assessment overestimated scar (%) in comparison to ECV-guided analysis [training: 4.5 (3.2-6.4) vs. 0.92 (0.1-2.1); validation: 2.5 (1.2-3.7) vs. 0.2 (0-1.6); P < 0.01 for both]. Intra- and inter-observer analyses of global scar (%) showed higher reproducibility in ECV-guided than manual analysis with CCC = 0.94 and 0.78 versus CCC = 0.86 and 0.73, respectively (P < 0.01 for all). In ischemic validation, the ECV-guided LGE analysis showed a comparable scar amount and reproducibility with the FWHM. Conclusions ECV-guided LGE analysis is a robust scar quantification method for a non-ischemic cohort. Trial registration ClinicalTrials.gov; NCT00000797, retrospectively-registered 2 November 1999; NCT02501811, registered 15 July 2015.Cardiovascular Aspects of Radiolog

    Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes

    Get PDF
    Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future

    Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study

    Get PDF
    Purpose: To develop a deep learning–based method for fully automated quantification of left ventricular (LV) function from short-axis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods: This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results: CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm ± 0.3 for CNN3, compared with 1.5 mm ± 1.0 for CNN1 (P < .05) and 1.3 mm ± 0.6 for CNN2 (P < .05). The LV function parameters derived from CNN3 showed a high correlation (r2 ≥ 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion: A deep learning–based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data

    End stage renal disease patients have a skewed T cell receptor Vβ repertoire

    Get PDF
    BACKGROUND: End stage renal disease (ESRD) is associated with defective T-cell mediated immunity. A diverse T-cell receptor (TCR) Vβ repertoire is central to effective T-cell mediated immune responses to foreign antigens. In this study, the effect of ESRD on TCR Vβ repertoire was assessed. RESULTS: A higher proportion of ESRD patients (68.9 %) had a skewed TCR Vβ repertoire compared to age and cytomegalovirus (CMV) – IgG serostatus matched healthy individuals (31.4 %, P < 0.001). Age, CMV serostatus and ESRD were independently associated with an increase in shifting of the TCR Vβ repertoire. More differentiated CD8(+) T cells were observed in young ESRD patients with a shifted TCR Vβ repertoire. CD31-expressing naive T cells and relative telomere length of T cells were not significantly related to TCR Vβ skewing. CONCLUSIONS: ESRD significantly skewed the TCR Vβ repertoire particularly in the elderly population, which may contribute to the uremia-associated defect in T-cell mediated immunity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12979-015-0055-7) contains supplementary material, which is available to authorized users

    On-chip polyelectrolyte coating onto magnetic droplets-towards continuous flow assembly of drug delivery capsules

    Get PDF
    Polyelectrolyte (PE) microcapsules for drug delivery are typically fabricated via layer-by-layer (LbL) deposition of PE layers of alternating charge on sacrificial template microparticles, which usually requires multiple incubation and washing steps that render the process repetitive and time-consuming. Here, ferrofluid droplets were explored for this purpose as an elegant alternative of templates that can be easily manipulated via an external magnetic field, and require only a simple microfluidic chip design and setup. Glass microfluidic devices featuring T-junctions or flow focusing junctions for the generation of oil-based ferrofluid droplets in an aqueous continuous phase were investigated. Droplet size was controlled by the microfluidic channel dimensions as well as the flow rates of the ferrofluid and aqueous phases. The generated droplets were stabilised by a surface active polymer, polyvinylpyrrolidone (PVP), and then guided into a chamber featuring alternating, co-laminar PE solutions and wash streams, and deflected across them by means of an external permanent magnet. The extent of droplet deflection was tailored by the flow rates, the concentration of magnetic nanoparticles in the droplets, and the magnetic field strength. PVP-coated ferrofluid droplets were deflected through solutions of polyelectrolyte and washing streams using several iterations of multilaminar flow designs. This culminated in an innovative "Snakes-and-Ladders" inspired microfluidic chip design that overcame various issues of the previous iterations for the deposition of layers of anionic poly(sodium-4-styrene sulfonate) (PSS) and cationic poly(fluorescein isothiocyanate allylamine hydrochloride) (PAH-FITC) onto the droplets. The presented method demonstrates a simple and rapid process for PE layer deposition in <30 seconds, and opens the way towards rapid layer-by-layer assembly of PE microcapsules for drug delivery applications.The authors thank the Royal Embassy of Saudi Arabia Cultural Bureau in London and Albaha University in Saudi Arabia for funding. J.G.-P., E.B. and I.O. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (project CTQ2015-66078-R (MINECO/FEDER) and FPI postgraduate research grant (BES-2013-064415). The authors thank Dr Stephen Clark for fabrication of the microfluidic devices
    corecore