9,967 research outputs found
Evolving dynamic multiple-objective optimization problems with objective replacement
This paper studies the strategies for multi-objective optimization in a dynamic environment. In particular, we focus on problems with objective replacement, where some objectives may be replaced with new objectives during evolution. It is shown that the Pareto-optimal sets before and after the objective replacement share some common members. Based on this observation, we suggest the inheritance strategy. When objective replacement occurs, this strategy selects good chromosomes according to the new objective set from the solutions found before objective replacement, and then continues to optimize them via evolution for the new objective set. The experiment results showed that this strategy can help MOGAs achieve better performance than MOGAs without using the inheritance strategy, where the evolution is restarted when objective replacement occurs. More solutions with better quality are found during the same time span
An investigation of air and water dual adjustment decoupling control of surface heat exchanger
The terminal equipment of central cooling system accounts for a significant proportion of the total system's energy consumption. Therefore, it is important to reduce the terminal equipment energy consumption in central air conditioning system. In this study, the difference of the effect of the chilled water flow rate and air supply rate on the surface cooler during the heat transfer process is taken into full account. Matlab/Simulink simulation software is used to model and simulate the heat transfer of surface cooler of the main terminal equipment of air conditioning system. Simulation tests and experimental validations are conducted by using variable chilled water flow rate and variable air supply rate control mode separately. The experiment results show that the simulation model can effectively predict the heat transfer performance of heat exchanger. Further, the study introduced a dual feedback control mode, which synchronously regulates the chilled water flow rate and air supply rate. Also, under certain conditions, the complex heat transfer process of the surface cooler can be decoupled, and single variable control pattern is used to separately regulate the chilled water flow rate and air supply rate. This can effectively shorten the system regulation time, reduce overshoot and improve control performance
Organoaluminium complexes of ortho-, meta-, para-anisidines: synthesis, structural studies and ROP of ε-caprolactone (and rac-lactide)
Reaction of Me₃Al (two equivalents) with ortho-, meta- or para-anisidine, (OMe)(NH₂)C₆H₄, affords the complexes {[1,2-(OMe),NC₆H₄(μ-Me₂Al)](μ-Me₂Al)}₂ (1), [1,3-(Me₃AlOMe),NHC₆H₄(μ-Me₂Al)]2 (2) or [1,4-(Me₃AlOMe),NHC₆H₄(μ-Me₂Al)]₂ (3), respectively. The molecular structures of 1–3 have been determined and all three complexes were found to be highly active for the ring opening polymerization (ROP) of ε-caprolactone. 1 was found highly active either with or without benzyl alcohol present; at various temperatures, the activity order 1 > 2 ≈ 3 was observed. For the ROP of rac-lactide results for 1–3 were poor
Organoaluminium complexes derived from Anilines or Schiff bases for ring opening polymerization of epsilon-caprolactone, delta-valerolactone and rac-lactide
Reaction of R¹R²CHN=CH(3,5-tBu₂C₆H₂-OH-2) (R¹ = R² = Me L¹H; R¹ = Me, R² = Ph L²H; R¹ = R2 = Ph L³H) with one equivalent of R³3Al (R³ = Me, Et) afforded [(L¹-³)AlR³₂] (L¹, R³ = Me 1, R³ = Et 2; L², R³ = Me 3, R³ = Et 4; L³ R³ = Me 5, R³ = Et 6); complex 1 has been previously reported. Use of the N,O-ligand derived from 2,2/-diphenylglycine afforded either 5 or a by-product [Ph₂NCH₂(3,5-tBu₂C₆H₂-O-2)AlMe₂] (7). The known Schiff base complex [2-Ph₂PC₆H4CH₂(3,5-tBu₂C₃H₂-O-2)AlMe₂] (8) and the product of the reaction of 2-diphenylphosphinoaniline 1-NH₂,2-PPh₂C₆H4 with Me3Al, namely {Ph₂PC₆H4N[(Me₂Al)₂mu-Me](mu-Me₂Al)} (9) were also isolated. For structural and catalytic comparisons, complexes resulting from interaction of Me₃Al with diphenylamine or benzhydrylamine, namely {Ph₂N[(Me₂Al)2mu-Me]} (10) and [Ph₂CHNH(mu-Me₂Al)]₂·MeCN (11), were prepared. The molecular structures of the Schiff pro-ligands derived from Ph₂CHNH₂ and 2,2/-Ph2C(CO₂H)(NH₂), together with complexes 5, 7 and 9 - 11·MeCN were determined. All complexes have been screened for their ability to ring opening polymerization (ROP) epsilon-caprolactone, delta-valerolactone or rac-lactide, in the presence of benzyl alcohol, with or without solvent present. The co-polymerization of epsilon-caprolactone with rac-lactide has also been studied
Recommended from our members
Undescended retropharyngeal parathyroid adenoma with adjacent thymic tissue in a 13-year-old boy with primary hyperparathyroidism.
We describe a rare presentation of a symptomatic parathyroid adenoma located in an ectopic retropharyngeal position in a 13-year-old boy. Preoperative CT scan and MRI demonstrated the ectopic location of the parathyroid adenoma. The patient underwent successful parathyroidectomy with cure of his hyperparathyroidism. On pathologic exam, the specimen was made up of a parathyroid adenoma and adjacent thymic tissue, indicating that it was likely an undescended lower parathyroid gland arising from the third pharyngeal pouch. Ectopic retropharyngeal parathyroid adenomas are very rare and to our knowledge, none have been previously described in adolescents
Data taking strategy for the phase study in
The study of the relative phase between strong and electromagnetic amplitudes
is of great importance for understanding the dynamics of charmonium decays. The
information of the phase can be obtained model-independently by fitting the
scan data of some special decay channels, one of which is . To find out the optimal data taking strategy for a scan experiment
in the measurement of the phase in , the
minimization process is analyzed from a theoretical point of view. The result
indicates that for one parameter fit, only one data taking point in the
vicinity of a resonance peak is sufficient to acquire the optimal precision.
Numerical results are obtained by fitting simulated scan data. Besides the
results related to the relative phase between strong and electromagnetic
amplitudes, the method is extended to analyze the fits of other resonant
parameters, such as the mass and the total decay width of .Comment: 13 pages, 7 figure
Centrifuge modelling of cone penetration tests in layered soils
Penetration problems are important in many areas of geotechnical engineering, such as the prediction of pile capacity and interpretation of in situ test data. The cone penetration test is a proven method for evaluating soil properties, yet relatively little research has been conducted to understand the effect of soil layering on penetrometer readings. This paper focuses on the penetration of a probe within layered soils and investigates the layered soil effects on both penetration resistance and soil deformation. A series of centrifuge tests was performed in layered configurations of silica sand with varying relative density in a 180° axisymmetric model container. The tests allowed for the use of a half-probe for observation of the induced soil deformation through a poly(methyl methacrylate) window as well as a full-probe for measurement of penetration resistance within the central area of the container. The variations of penetration resistance and soil deformation characteristics as they relate to penetration depth, soil density and soil layering are examined. The results of deformation are also compared with previous experimental data to examine the effect of the axisymmetric condition. The effects of soil layering on both resistance and soil deformation are shown to be dependent on the relative properties between soil layers
Genome-Wide Localization of Protein-DNA Binding and Histone Modification by a Bayesian Change-Point Method with ChIP-seq Data
Next-generation sequencing (NGS) technologies have matured considerably since their introduction and a focus has been placed on developing sophisticated analytical tools to deal with the amassing volumes of data. Chromatin immunoprecipitation sequencing (ChIP-seq), a major application of NGS, is a widely adopted technique for examining protein-DNA interactions and is commonly used to investigate epigenetic signatures of diffuse histone marks. These datasets have notoriously high variance and subtle levels of enrichment across large expanses, making them exceedingly difficult to define. Windows-based, heuristic models and finite-state hidden Markov models (HMMs) have been used with some success in analyzing ChIP-seq data but with lingering limitations. To improve the ability to detect broad regions of enrichment, we developed a stochastic Bayesian Change-Point (BCP) method, which addresses some of these unresolved issues. BCP makes use of recent advances in infinite-state HMMs by obtaining explicit formulas for posterior means of read densities. These posterior means can be used to categorize the genome into enriched and unenriched segments, as is customarily done, or examined for more detailed relationships since the underlying subpeaks are preserved rather than simplified into a binary classification. BCP performs a near exhaustive search of all possible change points between different posterior means at high-resolution to minimize the subjectivity of window sizes and is computationally efficient, due to a speed-up algorithm and the explicit formulas it employs. In the absence of a well-established "gold standard" for diffuse histone mark enrichment, we corroborated BCP's island detection accuracy and reproducibility using various forms of empirical evidence. We show that BCP is especially suited for analysis of diffuse histone ChIP-seq data but also effective in analyzing punctate transcription factor ChIP datasets, making it widely applicable for numerous experiment types
- …
