6,569 research outputs found
Substantially increased sensitivity of the spot-ELISA for the detection of anti-insulin antibody-secreting cells using a capture antibody and enzyme-conjugated insulin
This paper describes an antibody capture spot-ELISA for the detection of anti-insulin antibody-secreting cells. The assay is based on the binding of secreted antibodies by immobilised isotype-specific capture antibodies and subsequent detection of insulin-specific antibodies with a conjugate of human insulin and alkaline phosphatase (HI-AP). Compared with the conventional approach, using antigen for coating and employing an enzyme-linked detecting antibody, this technique improved the detection of murine cells secreting anti-insulin antibodies of different IgG subclasses
Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes
The nature and extent of past and current hybridization between cultivated potato and wild relatives in nature is of interest to crop evolutionists, taxonomists, breeders and recently to molecular biologists because of the possibilities of inverse gene flow in the deployment of genetically-modified (GM) crops. This research proves that natural hybridization occurs in areas of potato diversity in the Andes, the possibilities for survival of these new hybrids, and shows a possible way forward in case of GM potatoes should prove advantageous in such areas
Structure of the Cytoplasmic Loop between Putative Helices II and III of the Mannitol Permease of Escherichia coli: A Tryptophan and 5-Fluorotryptophan Spectroscopy Study
In this work, four single tryptophan (Trp) mutants of the dimeric mannitol transporter of Escherichia coli, EIImtl, are characterized using Trp and 5-fluoroTrp (5-FTrp) fluorescence spectroscopy. The four positions, 97, 114, 126, and 133, are located in a region shown by recent studies to be involved in the mannitol translocation process. To spectroscopically distinguish between the Trp positions in each subunit of dimeric EIImtl, 5-FTrp was biosynthetically incorporated because of its much simpler photophysics compared to those of Trp. The steady-state and time-resolved fluorescence methodologies used point out that all four positions are in structured environments, both in the absence and in the presence of a saturating concentration of mannitol. The fluorescence decay of all 5-FTrp-containing mutants was highly homogeneous, suggesting similar microenvironments for both probes per dimer. However, Stern-Volmer quenching experiments using potassium iodide indicate different solvent accessibilities for the two probes at positions 97 and 133. A 5 Å two-dimensional (2D) projection map of the membrane-embedded IICmtl dimer showing 2-fold symmetry is available. The results of this work are in better agreement with a 7 Å projection map from a single 2D crystal on which no symmetry was imposed.
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model
We have calculated S(q) and the single particle distribution function
for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site
lattice with periodic boundary conditions; we justify the use of this lattice
in compariosn to those of having the full square symmetry of the bulk. This new
cluster has a high density of vec k points along the diagonal of reciprocal
space, viz. along k = (k,k). The results clearly demonstrate that when the
single hole problem has a ground state with a system momentum of vec k =
(pi/2,pi/2), the resulting ground state for N holes involves a shift of the
peak of the system's structure factor away from the antiferromagnetic state.
This shift effectively increases continuously with N. When the single hole
problem has a ground state with a momentum that is not equal to k =
(pi/2,pi/2), then the above--mentioned incommensurability for N holes is not
found. The results for the incommensurate ground states can be understood in
terms of rigid--band filling: the effective occupation of the single hole k =
(pi/2,pi/2) states is demonstrated by the evaluation of the single particle
momentum distribution function . Unlike many previous studies, we show
that for the many hole ground state the occupied momentum states are indeed k =
(+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include
Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction
Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER
Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson’s disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease
Self, non-self and the immune system
This thesis describes three areas of immunological research:
- Firstly the development of an immunological technique which allows an improved
detection of cells secreting specific antibodies. The results of this study demonstrated
that the use of a protocol employing coated capture antibodies and enzyme-labeled
antigen in stead of the sandwich-method employing antigen coating and enzymelabeled
detector antibodies could considerably improve the detection of cells secreting
antibodies of the lgG isotypes.
- Secondly an investigation of the immune system of germfree mice, fed an ultrafiltered
chemically defined low-molecular diet. Such mice are considered to be completely free
of exogenous antigens. Previous studies have shown that such mice have similar
numbers of B cells and background lgM secreting cells as conventional mice, but are
highly deficient in background lgG and lgA production. The results of our study
demonstrated that such mice had a normal repertoire of functional T cells, that could
be induced to lymphokine secretion, and that the absence of background immunoglobulin
secreting cells of the non-lgM isotypes was not caused by defects in
their B or T cells. This data indicates that the immune system has an autonomous
activity, which is independent of exogenous antigenic stimulation.
- Thirdly a study on the effects of the manipulation of the immune system with
antibodies against MHC class II molecules. The results of this study demonstrated that
in vivo treatment with antibodies directed against the MHC class II molecules caused
a rapid decrease in the number of background immunoglobulin secreting cells and T
cells in the spleen. This indicates that the generation of background immunoglobulin
secreting cells and the maintenance of the T cell compartment are dependent on
cognate interactions within the immune system involving MHC class II.
The combined results from these studies indicate that self-recognition is of
great importance for the autonomous activity of the immune system.
By defining the immune system as a host-defense system, it has been
postulated that the cells involved in this system should react to foreign antigens, but
ignore self-molecules. Based on the observation of self-recognition within the system
we conclude that host-defense is one among the tasks of the immune system, which
could be considered as the molecular equivalent of the nervous system
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
