6,104 research outputs found
Hidden force opposing ice compression
Coulomb repulsion between the unevenly-bound bonding and nonbonding electron
pairs in the O:H-O hydrogen-bond is shown to originate the anomalies of ice
under compression. Consistency between experimental observations, density
functional theory and molecular dynamics calculations confirmed that the
resultant force of the compression, the repulsion, and the recovery of
electron-pair dislocations differentiates ice from other materials in response
to pressure. The compression shortens and strengthens the longer-and-softer
intermolecular O:H lone-pair virtual-bond; the repulsion pushes the bonding
electron pair away from the H+/p and hence lengthens and weakens the
intramolecular H-O real-bond. The virtual-bond compression and the real-bond
elongation symmetrize the O:H-O as observed at ~60 GPa and result in the
abnormally low compressibility of ice. The virtual-bond stretching phonons (<
400 cm-1) are thus stiffened and the real-bond stretching phonons (> 3000 cm-1)
softened upon compression. The cohesive energy of the real-bond dominates and
its loss lowers the critical temperature for the VIII-VII phase transition. The
polarization of the lone electron pairs and the entrapment of the bonding
electron pairs by compression expand the band gap consequently. Findings should
form striking impact to understanding the physical anomalies of H2O.Comment: arXiv admin note: text overlap with arXiv:1110.007
Photon-assisted electron transmission resonance through a quantum well with spin-orbit coupling
Using the effective-mass approximation and Floquet theory, we study the
electron transmission over a quantum well in semiconductor heterostructures
with Dresselhaus spin-orbit coupling and an applied oscillation field. It is
demonstrated by the numerical evaluations that Dresselhaus spin-orbit coupling
eliminates the spin degeneracy and leads to the splitting of asymmetric
Fano-type resonance peaks in the conductivity. In turn, the splitting of
Fano-type resonance induces the spin- polarization-dependent electron-current.
The location and line shape of Fano-type resonance can be controlled by
adjusting the oscillation frequency and the amplitude of external field as
well. These interesting features may be a very useful basis for devising
tunable spin filters.Comment: 10pages,4figure
Switchable coupling between charge and flux qubits
We propose a hybrid quantum circuit with both charge and flux qubits
connected to a large Josephson junction that gives rise to an effective
inter-qubit coupling controlled by the external magnetic flux. This switchable
inter-qubit coupling can be used to transfer back and forth an arbitrary
superposition state between the charge qubit and the flux qubit working at the
optimal point. The proposed hybrid circuit provides a promising quantum memory
because the flux qubit at the optimal point can store the tranferred quantum
state for a relatively long time.Comment: 5 pages, 1 figur
Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit
We analyze the optical selection rules of the microwave-assisted transitions
in a flux qubit superconducting quantum circuit (SQC). We show that the
parities of the states relevant to the superconducting phase in the SQC are
well-defined when the external magnetic flux , then the
selection rules are same as the ones for the electric-dipole transitions in
usual atoms. When , the symmetry of the potential of
the artificial "atom'' is broken, a so-called -type "cyclic"
three-level atom is formed, where one- and two-photon processes can coexist. We
study how the population of these three states can be selectively transferred
by adiabatically controlling the electromagnetic field pulses. Different from
-type atoms, the adiabatic population transfer in our three-level
-atom can be controlled not only by the amplitudes but also by the
phases of the pulses
Simultaneous cooling of an artificial atom and its neighboring quantum system
We propose an approach for cooling both an artificial atom (e.g., a flux
qubit) and its neighboring quantum system, the latter modeled by either a
quantum two-level system or a quantum resonator. The flux qubit is cooled by
manipulating its states, following an inverse process of state population
inversion, and then the qubit is switched on to resonantly interact with the
neighboring quantum system. By repeating these steps, the two subsystems can be
simultaneously cooled. Our results show that this cooling is robust and
effective, irrespective of the chosen quantum systems connected to the qubit.Comment: 5 pages, 3 figure
Producing cluster states in charge qubits and flux qubits
We propose a method to efficiently generate cluster states in charge qubits,
both semiconducting and superconducting, as well as flux qubits. We show that
highly-entangled cluster states can be realized by a `one-touch' entanglement
operation by tuning gate bias voltages for charge qubits. We also investigate
the robustness of these cluster states for non-uniform qubits, which are
unavoidable in solid-state systems. We find that quantum computation based on
cluster states is a promising approach for solid-state qubits.Comment: 4 pages, 1 figure
- …
