41,793 research outputs found

    The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective

    Get PDF
    This paper presents a review of available petrological, geochonological and geochemical data for late Mesozoic to Recent igneous rocks in the South China Sea (SCS) and adjacent regions and a discussion of their petrogeneses and tectonic implications. The integration of these data with available geophysical and other geologic information led to the following tectono-magmatic model for the evolution of the SCS region. The geochemical characteristics of late Mesozoic granitic rocks in the Pearl River Mouth Basin (PRMB), micro-blocks in the SCS, the offshore continental shelf and Dalat zone in southern Vietnam, and the Schwaner Mountains in West Kalimantan, Borneo indicate that these are mainly I-type granites plus a small amount of S-type granites in the PRMB. These granitoids were formed in a continental arc tectonic setting, consistent with the ideas proposed by Holloway (1982) and Taylor and Hayes (1980, 1983), that there existed an Andean-type volcanic arc during later Mesozoic era in the SCS region. The geochonological and geochemical characteristics of the volcanics indicate an early period of bimodal volcanism (60-43. Ma or 32. Ma) at the northern margin of the SCS, followed by a period of relatively passive style volcanism during Cenozoic seafloor spreading (37 or 30-16. Ma) within the SCS, and post-spreading volcanism (tholeiitic series at 17-8. Ma, followed by alkali series from 8. Ma to present) in the entire SCS region. The geodynamic setting of the earlier volcanics was an extensional regime, which resulted from the collision between India and Eurasian plates since the earliest Cenozoic, and that of the post-spreading volcanics may be related to mantle plume magmatism in Hainan Island. In addition, the nascent Hainan plume may have played a significant role in the extension along the northern margin and seafloor spreading in the SCS. © 2014 Elsevier Ltd

    On the nonsquare constants of L(Φ)[0,+1)

    Get PDF
    Let L(Φ)[0,+1) be the Orlicz function space generated by N−function Φ(u) with Luxemburg norm. We show the exact nonsquare constant of it when the right derivative φ(t) of Φ(u) is convex or concave.Let L(Φ)[0,+1) be the Orlicz function space generated by N−function Φ(u) with Luxemburg norm. We show the exact nonsquare constant of it when the right derivative φ(t) of Φ(u) is convex or concave

    Quantum secret sharing between multiparty and multiparty with four states

    Full text link
    An protocol of quantum secret sharing between multiparty and multiparty with four states is presented. We show that this protocol can make the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. In addition, we also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states.Comment: 7 page

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure
    corecore