26,727 research outputs found

    Quark charge balance function and hadronization effects in relativistic heavy ion collisions

    Full text link
    We calculate the charge balance function of the bulk quark system before hadronization and those for the directly produced and the final hadron system in high energy heavy ion collisions. We use the covariance coefficient to describe the strength of the correlation between the momentum of the quark and that of the anti-quark if they are produced in a pair and fix the parameter by comparing the results for hadrons with the available data. We study the hadronization effects and decay contributions by comparing the results for hadrons with those for the bulk quark system. Our results show that while hadronization via quark combination mechanism slightly increases the width of the charge balance functions, it preserves the main features of these functions such as the longitudinal boost invariance and scaling properties in rapidity space. The influence from resonance decays on the width of the balance function is more significant but it does not destroy its boost invariance and scaling properties in rapidity space either. The balance functions in azimuthal direction are also presented.Comment: 9 figure

    Hyperon polarization in e^-p --> e^-HK with polarized electron beams

    Full text link
    We apply the picture proposed in a recent Letter for transverse hyperon polarization in unpolarized hadron-hadron collisions to the exclusive process e^-p --> e^-HK such as e^-p-->e^-\Lambda K^+, e^-p --> e^-\Sigma^+ K^0, or e^-p--> e^-\Sigma^0 K^+, or the similar process e^-p\to e^-n\pi^+ with longitudinally polarized electron beams. We present the predictions for the longitudinal polarizations of the hyperons or neutron in these reactions, which can be used as further tests of the picture.Comment: 15 pages, 2 figures. submitted to Phys. Rev.

    Study on thermal conductivity of gas phase in nano-porous aerogel

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Nano-porous aerogel has an ultra low thermal conductivity and is usually used as the super insulator. To evaluate the insulation performance of the aerogel, we focus on studying the thermal conductivity of gas phase in the aerogel. We present a modified model to take into account the effect of nonuniform pore-size distribution on the gaseous thermal conductivity, and the present model predicts more agreement results with available data than the existing models. The gaseous thermal conductivity of the aerogel at high temperature gradient condition is also numerically studied. We also study the effect of the thermal transpiration flow on the gaseous thermal conductivity, and the results shows that the thermal transpiration flow effect leads to a reduction of the gaseous thermal conductivity

    Global polarization of QGP in non-central heavy ion collisions at high energies

    Full text link
    Due to the presence of a large orbital angular momentum of the parton system produced at the early stage of non-central heavy-ion collisions, quarks and anti-quarks are shown to be polarized in the direction opposite to the reaction plane which is determined by the impact-parameter and the beam momentum. The global quark polarization via elastic scattering was first calculated in an effective static potential model, then using QCD at finite temperature with the hard-thermal-loop re-summed gluon propagator. The measurable consequences are discussed. Global hyperon polarization from the hadronization of polarized quarks are predicted independent of the hadronization scenarios. It has also been shown that the global polarization of quarks and anti-quarks leads also to spin alignment of vector mesons. Dedicated measurements at RHIC are underway and some of the preliminary results are obtained. In this presentation, the basic idea and main results of global quark polarization are presented. The direct consequences such as global hyperon polarization and spin alignment are summarized.Comment: plenary talk at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China, November 14-20, 200

    Saurogobio punctatus sp nov., a new cyprinid gudgeon (Teleostei: Cypriniformes) from the Yangtze River, based on both morphological and molecular data

    Get PDF
    A new cyprinid gudgeon, Saurogobio punctatus sp. nov., is described based on specimens collected from the Yangtze River, China. The new species can be distinguished from its congeners by differences in both morphology and the cytochrome b (cytb) gene sequence. Numerous minute blackish spots are scattered on dorsal and caudal fins in S. punctatus sp. nov. v. absent in the other seven valid Saurogobio species. The new species can be further distinguished from its congeners by the following unique combination of characters: a dorsal fin with eight branched rays; absence of scales in chest area before pectoral origin; upper and lower lips thick, covered with papillae; and a papillose mental pad approximately triangular. Morphologically, the new species most resembles the Chinese lizard gudgeon Saurogobio dabryi, but the new species lays yellowish adhesive eggs v. white pelagic eggs in S. dabryi. A phylogenetic analysis of all Saurogobio species based on cytb gene sequences indicated that S. punctatus sp. nov was distinctly separated from its congeners, with mean sequence divergence ranging from 126 to 210%. Therefore, molecular data further supported the distinctiveness of the new species.</p

    Structure and magnetism of Cr2BP3O12: Towards the quantum-classical crossover in a spin-3/2 alternating chain

    Full text link
    Magnetic properties of the spin-3/2 Heisenberg system Cr2BP3O12 are investigated by magnetic susceptibility chi(T) measurements, electron spin resonance, neutron diffraction, and density functional theory (DFT) calculations, as well as classical and quantum Monte Carlo (MC) simulations. The broad maximum of chi(T) at 85K and the antiferromagnetic Weiss temperature of 139 K indicate low-dimensional magnetic behavior. Below TN = 28 K, Cr2BP3O12 is antiferromagnetically ordered with the k = 0 propagation vector and an ordered moment of 2.5 muB/Cr. DFT calculations, including DFT+U and hybrid functionals, yield a microscopic model of spin chains with alternating nearest-neighbor couplings J1 and J1' . The chains are coupled by two inequivalent interchain exchanges of similar strength (~1-2 K), but different sign (antiferromagnetic and ferromagnetic). The resulting spin lattice is quasi-one-dimensional and not frustrated. Quantum MC simulations show excellent agreement with the experimental data for the parameters J1 ~= 50 K and J1'/J1 ~= 0.5. Therefore, Cr2BP3O12 is close to the gapless critical point (J1'/J1 = 0.41) of the spin-3/2 bond-alternating Heisenberg chain. The applicability limits of the classical approximation are addressed by quantum and classical MC simulations. Implications for a wide range of low-dimensional S = 3/2 materials are discussed.Comment: Published version: 13 pages, 7 figures, 5 tables + Supplementary informatio

    A comparison of the local spiral structure from Gaia DR2 and VLBI maser parallaxes

    Full text link
    Context. The Gaia mission has released the second data set (Gaia DR2), which contains parallaxes and proper motions for a large number of massive, young stars. Aims. We investigate the spiral structure in the solar neighborhood revealed by Gaia DR2 and compare it with that depicted by VLBI maser parallaxes. Methods. We examined three samples with different constraints on parallax uncertainty and distance errors and stellar spectral types: (1) all OB stars with parallax errors of less than 10%; (2) only O-type stars with 0.1 mas errors imposed and with parallax distance errors of less than 0.2 kpc; and (3) only O-type stars with 0.05 mas errors imposed and with parallax distance errors of less than 0.3 kpc. Results. In spite of the significant distance uncertainties for stars in DR2 beyond 1.4 kpc, the spiral structure in the solar neighborhood demonstrated by Gaia agrees well with that illustrated by VLBI maser results. The O-type stars available from DR2 extend the spiral arm models determined from VLBI maser parallaxes into the fourth Galactic quadrant, and suggest the existence of a new spur between the Local and Sagittarius arms.Comment: 4 pages, 3 figures, 1 table, accepted for publication in A&
    corecore