28,882 research outputs found
Geometric entanglement from matrix product state representations
An efficient scheme to compute the geometric entanglement per lattice site
for quantum many-body systems on a periodic finite-size chain is proposed in
the context of a tensor network algorithm based on the matrix product state
representations. It is systematically tested for three prototypical critical
quantum spin chains, which belong to the same Ising universality class. The
simulation results lend strong support to the previous claim [Q.-Q. Shi, R.
Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008
(2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82},
180406R (2010)] that the leading finite-size correction to the geometric
entanglement per lattice site is universal, with its remarkable connection to
the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally
invariant boundary condition.Comment: 4+ pages, 3 figure
A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor
The discovery of cuprate high Tc superconductors has inspired searching for
unconventional su- perconductors in magnetic materials. A successful recipe has
been to suppress long-range order in a magnetic parent compound by doping or
high pressure to drive the material towards a quantum critical point, which is
replicated in recent discovery of iron-based high TC superconductors. The
long-range magnetic order coexisting with superconductivity has either a small
magnetic moment or low ordering temperature in all previously established
examples. Here we report an exception to this rule in the recently discovered
potassium iron selenide. The superconducting composition is identified as the
iron vacancy ordered K0.8Fe1.6Se2 with Tc above 30 K. A novel large moment 3.31
{\mu}B/Fe antiferromagnetic order which conforms to the tetragonal crystal
symmetry has the unprecedentedly high an ordering temperature TN = 559 K for a
bulk superconductor. Staggeredly polarized electronic density of states thus is
suspected, which would stimulate further investigation into superconductivity
in a strong spin-exchange field under new circumstance.Comment: 5 figures, 5 pages, and 2 tables in pdf which arXiv.com cannot tak
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology
© 2015 Elsevier Ltd. This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1
A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge under the Stress of 2,4-Dichlorophenol
In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment
A Comparison of Quintessence and Nonlinear Born-Infeld Scalar Field Using Gold Supernova data
We study the Non-Linear Born-Infeld(NLBI) scalar field model and quintessence
model with two different potentials( and ). We
investigate the differences between those two models. We explore the equation
of state parameter w and the evolution of scale factor in both NLBI
scalar field and quintessence model. The present age of universe and the
transition redshift are also obtained. We use the Gold dataset of 157 SN-Ia to
constrain the parameters of the two models. All the results show that NLBI
model is slightly superior to quintessence model.Comment: 17 pages, 10 figures, some references adde
Isoscaling in the Lattice Gas Model
The isoscaling behavior is investigated using the isotopic/isobaric yields
from the equilibrated thermal source which is prepared by the lattice gas model
for lighter systems with A = 36. The isoscaling parameters and
- are observed to drop with temperature. The difference of neutron and
proton chemical potential shows a turning point around 5 MeV where the liquid
gas phase transition occurs in the model. The relative free neutron or proton
density shows a nearly linear relation with the N/Z (neutron to proton ratio)
of system and the isospin fractionation is observed.Comment: 5 figures, 5 pages; the final version to appear in Phys Rev
- …
