286 research outputs found
Stomach One-Point Cancer: One Case Report and Literature Review
Gastric cancer is one of the most common cancers and one of themost frequent causes of cancer deaths worldwide. Early detection andaccurate preoperative staging of gastric cancer is essential for planning optimal therapy such as endoscopic mucosal resection or gastric resection and offers the best prognosis. With advanced technology in diagnostic instruments and the mass screening, early gastric cancer has been detected easier. One-point cancer of gastric is a special type of early gastric cancer[1]. Diagnosis of one-point cancer of gastric is important for both the immediate treatment and the prognosis. There is still no consensus on the operation extent and postoperative treatment for patients with one-point cancer of gastric. Learned from previous reports[2-5], we know that existed in the superfi cial layer of the gastric mucosa and the superfi cial ulcer is one of the important characteristics of one point cancer of gastric. Herein, we report a case of one point cancer of gastric with the appearance of a deep infi ltrating ulcer. To the best of our knowledge, no such type of one point cancer of gastric has been reported
Dynamic Response Analysis of the Fractional-Order System of MEMS Viscometer
This paper presented dynamic response analysis for an MEMS viscometer. The responses are governed by a set of differential equations containing fractional derivatives. The memory-free Yuan-Agrawal’s approach was extended to solve fractional differential equations containing arbitrary fractional order derivative and then a simple yet efficient numerical scheme was constructed. Numerical examples show that the proposed method can provide very accurate results and computational efforts can be significantly saved. Moreover, the numerical scheme was extended to solve problems with a nonlinear spring. The influences of the nonlinear parameters on the dynamic responses were also efficiently analyzed. The dependence of the angular frequency on damping parameters was also revealed. The presented method can provide us a new perspective to measure the fluid viscosity
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Marine reserves promote cycles in fish populations on ecological and evolutionary time scales
Marine reserves are considered essential for sustainable fisheries, although their effectiveness compared to traditional fisheries management is debated. The effect of marine reserves is mostly studied on short ecological time scales, whereas fisheries-induced evolution is a well-established consequence of harvesting. Using a size-structured population model for an exploited fish population of which individuals spend their early life stages in a nursery habitat, we show that marine reserves will shift the mode of population regulation from low size-selective survival late in life to low, early-life survival due to strong resource competition. This shift promotes the occurrence of rapid ecological cycles driven by density-dependent recruitment as well as much slower evolutionary cycles driven by selection for the optimal body to leave the nursery grounds, especially with larger marine reserves. The evolutionary changes increase harvesting yields in terms of total biomass but cause disproportionately large decreases in yields of larger, adult fish. Our findings highlight the importance of carefully considering the size of marine reserves and the individual life history of fish when managing eco-evolutionary marine systems to ensure both population persistence as well as stable fisheries yields.</p
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Strain-facilitated process for the lift-off of a Si layer of less than 20 nm thickness
We report a process for the lift-off of an ultrathin Si layer. By plasma hydrogenation of a molecular-beam-epitaxy-grown heterostructure of SiSb-doped-SiSi, ultrashallow cracking is controlled to occur at the depth of the Sb-doped layer. Prior to hydrogenation, an oxygen plasma treatment is used to induce the formation of a thin oxide layer on the surface of the heterostructure. Chemical etching of the surface oxide layer after hydrogenation further thins the thickness of the separated Si layer to be only 15 nm. Mechanisms of hydrogen trapping and strain-facilitated cracking are discussed
- …
