86 research outputs found
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence
Single dye molecules at cryogenic temperatures display many spectroscopic
phenomena known from free atoms and are thus promising candidates for
fundamental quantum optical studies. However, the existing techniques for the
detection of single molecules have either sacrificed the information on the
coherence of the excited state or have been inefficient. Here we show that
these problems can be addressed by focusing the excitation light near to the
absorption cross section of a molecule. Our detection scheme allows us to
explore resonance fluorescence over 9 orders of magnitude of excitation
intensity and to separate its coherent and incoherent parts. In the strong
excitation regime, we demonstrate the first observation of the Mollow triplet
from a single solid-state emitter. Under weak excitation we report the
detection of a single molecule with an incident power as faint as 150 attoWatt,
paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure
Ultrasensitive force and displacement detection using trapped ions
The ability to detect extremely small forces is vital for a variety of
disciplines including precision spin-resonance imaging, microscopy, and tests
of fundamental physical phenomena. Current force-detection sensitivity limits
have surpassed 1 (atto ) through coupling of micro or
nanofabricated mechanical resonators to a variety of physical systems including
single-electron transistors, superconducting microwave cavities, and individual
spins. These experiments have allowed for probing studies of a variety of
phenomena, but sensitivity requirements are ever-increasing as new regimes of
physical interactions are considered. Here we show that trapped atomic ions are
exquisitely sensitive force detectors, with a measured sensitivity more than
three orders of magnitude better than existing reports. We demonstrate
detection of forces as small as 174 (yocto ), with a
sensitivity 390 using crystals of Be
ions in a Penning trap. Our technique is based on the excitation of normal
motional modes in an ion trap by externally applied electric fields, detection
via and phase-coherent Doppler velocimetry, which allows for the discrimination
of ion motion with amplitudes on the scale of nanometers. These experimental
results and extracted force-detection sensitivities in the single-ion limit
validate proposals suggesting that trapped atomic ions are capable of detecting
of forces with sensitivity approaching 1 . We anticipate that
this demonstration will be strongly motivational for the development of a new
class of deployable trapped-ion-based sensors, and will permit scientists to
access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to
press embarg
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles
A critical requirement for diverse applications in Quantum Information
Science is the capability to disseminate quantum resources over complex quantum
networks. For example, the coherent distribution of entangled quantum states
together with quantum memory to store these states can enable scalable
architectures for quantum computation, communication, and metrology. As a
significant step toward such possibilities, here we report observations of
entanglement between two atomic ensembles located in distinct apparatuses on
different tables. Quantum interference in the detection of a photon emitted by
one of the samples projects the otherwise independent ensembles into an
entangled state with one joint excitation stored remotely in 10^5 atoms at each
site. After a programmable delay, we confirm entanglement by mapping the state
of the atoms to optical fields and by measuring mutual coherences and photon
statistics for these fields. We thereby determine a quantitative lower bound
for the entanglement of the joint state of the ensembles. Our observations
provide a new capability for the distribution and storage of entangled quantum
states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200
Von Bezold assimilation effect reverses in stereoscopic conditions
Lightness contrast and lightness assimilation are opposite phenomena: in contrast,
grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in
assimilation, the opposite occurs. The question is: which visual process favours the occurrence
of one phenomenon over the other? Researchers provided three answers to this question. The
first asserts that both phenomena are caused by peripheral processes; the second attributes their
occurrence to central processes; and the third claims that contrast involves central processes,
whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT
system equipped with goggles for stereo vision was run. Observers were asked to evaluate the
lightness of a grey target, and two variables were systematically manipulated: (i) the apparent
distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept
constant throughout, so that the peripheral processes remained the same. The results show that
the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we
conclude that central mechanisms are involved in both lightness contrast and lightness assimilation
Nanophotonic quantum phase switch with a single atom
By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks1, 2, 3. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system4, such a switch may enable applications such as long-distance quantum communication5, distributed quantum information processing2 and metrology6, and the exploration of novel quantum states of matter7. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom’s phase. We experimentally demonstrate an atom-induced optical phase shift8 that is nonlinear at the two-photon level9, a photon number router that separates individual photons and photon pairs into different output modes10, and a single-photon switch in which a single ‘gate’ photon controls the propagation of a subsequent probe field11, 12. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.Physic
Photonic transistor and router using a single quantum-dotconfined spin in a single-sided optical microcavity
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks
Dissipative and Non-dissipative Single-Qubit Channels: Dynamics and Geometry
Single-qubit channels are studied under two broad classes: amplitude damping
channels and generalized depolarizing channels. A canonical derivation of the
Kraus representation of the former, via the Choi isomorphism is presented for
the general case of a system's interaction with a squeezed thermal bath. This
isomorphism is also used to characterize the difference in the geometry and
rank of these channel classes. Under the isomorphism, the degree of decoherence
is quantified according to the mixedness or separability of the Choi matrix.
Whereas the latter channels form a 3-simplex, the former channels do not form a
convex set as seen from an ab initio perspective. Further, where the rank of
generalized depolarizing channels can be any positive integer upto 4, that of
amplitude damping ones is either 2 or 4. Various channel performance parameters
are used to bring out the different influences of temperature and squeezing in
dissipative channels. In particular, a noise range is identified where the
distinguishability of states improves inspite of increasing decoherence due to
environmental squeezing.Comment: 12 pages, 4 figure
Ion Trap in a Semiconductor Chip
The electromagnetic manipulation of isolated atoms has led to many advances
in physics, from laser cooling and Bose-Einstein condensation of cold gases to
the precise quantum control of individual atomic ion. Work on miniaturizing
electromagnetic traps to the micrometer scale promises even higher levels of
control and reliability. Compared with 'chip traps' for confining neutral
atoms, ion traps with similar dimensions and power dissipation offer much
higher confinement forces and allow unparalleled control at the single-atom
level. Moreover, ion microtraps are of great interest in the development of
miniature mass spectrometer arrays, compact atomic clocks, and most notably,
large scale quantum information processors. Here we report the operation of a
micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor
micro-electromechanical systems (MEMS) technology. We confine, laser cool, and
measure heating of a single 111Cd+ ion in an integrated radiofrequency trap
etched from a doped gallium arsenide (GaAs) heterostructure.Comment: 4 pages, 4 figure
- …
