1,349 research outputs found
Biological impacts of 'hot-spot' mutations of hepatitis B virus X proteins are genotype B and C differentiated
AIM: To investigate the biological impacts of “hot-spot” mutations on genotype B and C HBV X proteins (HBx).
METHODS: Five types of “hot-spot” mutations of genotype B or C HBV X genes, which sequentially lead to the amino acid substitutions of HBx as I127T, F132Y, K130M+V131I, I127T+K130M+V131I, or K130M+V131I+F132Y, respectively, were generated by means of site-directed mutagenesis. To evaluate the anti-proliferative effects, HBx or related mutants’ expression vectors were transfected separately to the Chang cells by lipofectamine, and the cells were cultured in hygromycin selective medium for 14 d, drug-resistant colonies were fixed with cold methanol, stained with Giemsa dyes and scored (increase of the colonies indicated the reduction of the anti-proliferation activity, and vice versa). Different types of HBx expression vectors were co-transfected separately with the reporter plasmid pCMVβ to Chang cells, which were lysed 48 h post-transfection and the intra-cellular β-galactosidase activities were monitored (increase of the β-galactosidase activities indicated the reduction of the transactivation activity, and vice versa). All data obtained were calculated by paired-samples t-test.
RESULTS: As compared to standard genotype B HBx, mutants of I127T and I127T+K130M+V131I showed higher transactivation and anti-proliferative activities, while the mutants of F132Y, K130M+V131I, and K130M+V131I+F132Y showed lower activities. As compared to standard genotype C HBx, I127T mutant showed higher transactivation activity, while the other four types of mutants showed no differences. With regard to anti-proliferative activity, compared to standard genotype C HBx, F132Y and K130M+V131I mutants showed lower activities, and K130M+V131I +F132Y mutant, on the other hand, showed higher activity, while the mutants of I127T and I127T+K130M+V131I showed no differences.
CONCLUSION: “Hot-spot” mutations affect the anti-proliferation and transactivation activities of genotype B and/or C HBx, and the biological impacts of most “hot-spot” mutations on HBx are genotype B and C differentiated.published_or_final_versio
Cloning and characterization of interferon stimulated genes Viperin and ISG15, and their promoters from snakehead Channa argus
By suppression subtractive hybridization, rapid amplification of cDNA ends and gene walking methods, interferon stimulated genes (ISGs), Viperin and ISG15, and their promoters have been cloned and characterized from snakehead Channa argus. The Viperin cDNA was found to be 1474 nt and contain an open reading frame (ORF) of 1059 nt that translates into a putative peptide of 352 amino acid (aa). The putative peptide of Viperin shows high identity to that in teleosts and mammals except for the N-terminal 70 aa. The ISG15 cDNA was found to be 758 nt and contain an ORF of 468 nt that translates into a putative peptide of 155 aa. The putative peptide of ISG15 is composed of two tandem repeats of ubiquitin-like (UBL) domains, and a canonical conjugation motif (LRGG) at C-terminal. Viperin and ISG15 promoter regions were characterized by the presence of interferon stimulating response elements (ISRE) and gamma-IFN activation sites (GAS). ISRE is a feature of IFN-induced gene promoter and partially overlaps interferon regulatory factor (IRF) 1 and IRF2 recognition sites. GAS is responsible for the gamma-IFN mediated transcription. One conserved site for NF-kappa B was found in the promoter region of Viperin. This is the first report of conservative binding motif for NF-kappa B in accordance with the consensus sequence (GGGRN-NYYCC) among teleost ISG promoters. Moreover, there were also TATA, CAAT and Sp1 transcription factor sites in Viperin and ISG15 promoters. In 5' untranslated region (UTR), snakehead ISG15 gene contains a single intron, which differs from Viperin gene. The transcripts of Vipeirn and ISG15 mRNA were mainly expressed in head kidney, posterior kidney, spleen and gill. The expression levels in liver were found to increase obviously in response to induction by IFN-inducer poly I : C.By suppression subtractive hybridization, rapid amplification of cDNA ends and gene walking methods, interferon stimulated genes (ISGs), Viperin and ISG15, and their promoters have been cloned and characterized from snakehead Channa argus. The Viperin cDNA was found to be 1474 nt and contain an open reading frame (ORF) of 1059 nt that translates into a putative peptide of 352 amino acid (aa). The putative peptide of Viperin shows high identity to that in teleosts and mammals except for the N-terminal 70 aa. The ISG15 cDNA was found to be 758 nt and contain an ORF of 468 nt that translates into a putative peptide of 155 aa. The putative peptide of ISG15 is composed of two tandem repeats of ubiquitin-like (UBL) domains, and a canonical conjugation motif (LRGG) at C-terminal. Viperin and ISG15 promoter regions were characterized by the presence of interferon stimulating response elements (ISRE) and gamma-IFN activation sites (GAS). ISRE is a feature of IFN-induced gene promoter and partially overlaps interferon regulatory factor (IRF) 1 and IRF2 recognition sites. GAS is responsible for the gamma-IFN mediated transcription. One conserved site for NF-kappa B was found in the promoter region of Viperin. This is the first report of conservative binding motif for NF-kappa B in accordance with the consensus sequence (GGGRN-NYYCC) among teleost ISG promoters. Moreover, there were also TATA, CAAT and Sp1 transcription factor sites in Viperin and ISG15 promoters. In 5' untranslated region (UTR), snakehead ISG15 gene contains a single intron, which differs from Viperin gene. The transcripts of Vipeirn and ISG15 mRNA were mainly expressed in head kidney, posterior kidney, spleen and gill. The expression levels in liver were found to increase obviously in response to induction by IFN-inducer poly I : C
Identification and characterization of common carp (Cyprinus carpio L.) granzyme A/K, a cytotoxic cell granule-associated serine protease
Granzyme (Gzm) is an important member of serine protease family, and key component in the specific and non-specific cell-mediated cytotoxicity Partial GzmA/K cDNA sequence of common carp (Cyprinus carpi L) was isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp GzmA/K was obtained by means of 3' RACE and 5' RACE, respectively The full length cDNA of carp GzmA/K was 1053 bp, consisting of a 5'-terminal untranslated region (UTR) of 65 bp, a 3'-terminal UTR of 214 bp, and an open reading frame of 774 bp Amino acid sequence analysis indicated the existence of a signal peptide, eight consensus cysteine residues, one conserved IIGG motif and three conserved residues as central elements of the GzmA/K active site. Carp GzmA/K shared 36% and 39% amino acid identity to human GzmA and K, respectively, and was phylogenetically related to the granzyme A and K subgroups Then, a genomic DNA, which covers the promoter region and entire coding region of carp GzmA/K, was obtained by PCR. In the 5.4 k-long genomic sequence, five exons and four introns were identified. Real-time RT-PCR analysis showed that carp GzmA/K transcript was predominantly detected in the immune-related tissues, and after SVCV infection, was up-regulated in most immune-related tissues in a time-dependent manner Real-time RT-PCR results also showed that carp GzmA/K transcript was up-regulated in thymus tissue of GH transgenic carp These results will help to understand the molecular characterization and the potential role of teleost GzmA/K, a cytotoxic cell granule-associated serine protease Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserve
Self-supported bimetallic array superstructures for high-performance coupling electrosynthesis of formate and adipate
The coupling electrosynthesis involving CO2 upgrade conversion is of great significance for the sustainable development of the environment and energy but is challenging. Herein, we exquisitely constructed the self-supported bimetallic array superstructures from the Cu(OH)2 array architecture precursor, which can enable high-performance coupling electrosynthesis of formate and adipate at the anode and the cathode, respectively. Concretely, the faradaic efficiencies (FEs) of CO2-to-formate and cyclohexanone-to-adipate conversion simultaneously exceed 90% at both electrodes with excellent stabilities. Such high-performance coupling electrosynthesis is highly correlated with the porous nanosheet array superstructure of CuBi alloy as the cathode and the nanosheet-on-nanowire array superstructure of CuNi hydroxide as the anode. Moreover, compared to the conventional electrolysis process, the cell voltage is substantially reduced while maintaining the electrocatalytic performance for coupling electrosynthesis in the two-electrode electrolyzer with the maximal FEformate and FEadipate up to 94.2% and 93.1%, respectively. The experimental results further demonstrate that the bimetal composition modulates the local electronic structures, promoting the reactions toward the target products. Prospectively, our work proposes an instructive strategy for constructing adaptive self-supported superstructures to achieve efficient coupling electrosynthesis
Generation of integration-free neural progenitor cells from cells in human urine
Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.postprin
Lithium suppression of tau induces brain iron accumulation and neurodegeneration
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients
Prepatterning in the Stem Cell Compartment
The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate between functionally distinct substates that are primed to select distinct lineages when differentiation is induced
A rough set-based association rule approach implemented on exploring beverages product spectrum
[[abstract]]When items are classified according to whether they have more or less of a characteristic, the scale used is referred to as an ordinal scale. The main characteristic of the ordinal scale is that the categories have a logical or ordered relationship to each other. Thus, the ordinal scale data processing is very common in marketing, satisfaction and attitudinal research. This study proposes a new data mining method, using a rough set-based association rule, to analyze ordinal scale data, which has the ability to handle uncertainty in the data classification/sorting process. The induction of rough-set rules is presented as method of dealing with data uncertainty, while creating predictive if—then rules that generalize data values, for the beverage market in Taiwan. Empirical evaluation reveals that the proposed Rough Set Associational Rule (RSAR), combined with rough set theory, is superior to existing methods of data classification and can more effectively address the problems associated with ordinal scale data, for exploration of a beverage product spectrum.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Human breast cancer-derived soluble factors facilitate CCL19-induced chemotaxis of human dendritic cells
Breast cancer remains as a challenging disease with high mortality in women. Increasing evidence points the importance of understanding a crosstalk between breast cancers and immune cells, but little is known about the effect of breast cancer-derived factors on the migratory properties of dendritic cells (DCs) and their consequent capability in inducing T cell immune responses. Utilizing a unique 3D microfluidic device, we here showed that breast cancers (MCF-7, MDA-MB-231, MDA-MB-436 and SK-BR-3)-derived soluble factors increase the migration of DCs toward CCL19. The enhanced migration of DCs was mainly mediated via the highly activated JNK/c-Jun signaling pathway, increasing their directional persistence, while the velocity of DCs was not influenced, particularly when they were co-cultured with triple negative breast cancer cells (TNBCs or MDA-MB-231 and MDA-MB-436). The DCs up-regulated inflammatory cytokines IL-1?? and IL-6 and induced T cells more proliferative and resistant against activation-induced cell death (AICD), which secret high levels of inflammatory cytokines IL-1??, IL-6 and IFN-??. This study demonstrated new possible evasion strategy of TNBCs utilizing their soluble factors that exploit the directionality of DCs toward chemokine responses, leading to the building of inflammatory milieu which may support their own growth.ope
- …
