1,707 research outputs found
Congestion avoidance for recharging electric vehicles using smoothed particle hydrodynamics
In this paper, a novel approach for recharging electric vehicles (EVs) is proposed based on managing multiple discrete units of electric power flow, named energy demand particles (EDPs). Key similarities between EDPs and fluid particles (FPs) are established that allow the use of a smoothed particle hydrodynamics (SPH) method for scheduling the recharging times of EVs. It is shown, via simulation, that the scheduling procedure not only minimizes the variance of voltage drops in the secondary circuits, but it also can be used to implement a dynamic demand response and frequency control mechanism. The performance of the proposed scheduling procedure is also compared with alternative approaches recently published in the literature
Automotive three-microphone voice activity detector and noise-canceller
This paper addresses issues in improving hands-free speech recognition performance in car
environments. A three-microphone array has been used to form a beamformer with leastmean
squares (LMS) to improve Signal to Noise Ratio (SNR). A three-microphone array
has been paralleled to a Voice Activity Detection (VAD). The VAD uses time-delay
estimation together with magnitude-squared coherence (MSC)
QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment
Previous studies have reported that common dense linear algebra operations do
not achieve speed up by using multiple geographical sites of a computational
grid. Because such operations are the building blocks of most scientific
applications, conventional supercomputers are still strongly predominant in
high-performance computing and the use of grids for speeding up large-scale
scientific problems is limited to applications exhibiting parallelism at a
higher level. We have identified two performance bottlenecks in the distributed
memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear
algebra library. First, because ScaLAPACK assumes a homogeneous communication
network, the implementations of ScaLAPACK algorithms lack locality in their
communication pattern. Second, the number of messages sent in the ScaLAPACK
algorithms is significantly greater than other algorithms that trade flops for
communication. In this paper, we present a new approach for computing a QR
factorization -- one of the main dense linear algebra kernels -- of tall and
skinny matrices in a grid computing environment that overcomes these two
bottlenecks. Our contribution is to articulate a recently proposed algorithm
(Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in
order to confine intensive communications (ScaLAPACK calls) within the
different geographical sites. An experimental study conducted on the Grid'5000
platform shows that the resulting performance increases linearly with the
number of geographical sites on large-scale problems (and is in particular
consistently higher than ScaLAPACK's).Comment: Accepted at IPDPS10. (IEEE International Parallel & Distributed
Processing Symposium 2010 in Atlanta, GA, USA.
On the Quantitative Impact of the Schechter-Valle Theorem
We evaluate the Schechter-Valle (Black Box) theorem quantitatively by
considering the most general Lorentz invariant Lagrangian consisting of
point-like operators for neutrinoless double beta decay. It is well known that
the Black Box operators induce Majorana neutrino masses at four-loop level.
This warrants the statement that an observation of neutrinoless double beta
decay guarantees the Majorana nature of neutrinos. We calculate these
radiatively generated masses and find that they are many orders of magnitude
smaller than the observed neutrino masses and splittings. Thus, some lepton
number violating New Physics (which may at tree-level not be related to
neutrino masses) may induce Black Box operators which can explain an observed
rate of neutrinoless double beta decay. Although these operators guarantee
finite Majorana neutrino masses, the smallness of the Black Box contributions
implies that other neutrino mass terms (Dirac or Majorana) must exist. If
neutrino masses have a significant Majorana contribution then this will become
the dominant part of the Black Box operator. However, neutrinos might also be
predominantly Dirac particles, while other lepton number violating New Physics
dominates neutrinoless double beta decay. Translating an observed rate of
neutrinoless double beta decay into neutrino masses would then be completely
misleading. Although the principal statement of the Schechter-Valle theorem
remains valid, we conclude that the Black Box diagram itself generates
radiatively only mass terms which are many orders of magnitude too small to
explain neutrino masses. Therefore, other operators must give the leading
contributions to neutrino masses, which could be of Dirac or Majorana nature.Comment: 18 pages, 4 figures; v2: minor corrections, reference added, matches
journal version; v3: typo corrected, physics result and conclusions unchange
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Neutrino masses from new generations
We reconsider the possibility that Majorana masses for the three known
neutrinos are generated radiatively by the presence of a fourth generation and
one right-handed neutrino with Yukawa couplings and a Majorana mass term. We
find that the observed light neutrino mass hierarchy is not compatible with low
energy universality bounds in this minimal scenario, but all present data can
be accommodated with five generations and two right-handed neutrinos. Within
this framework, we explore the parameter space regions which are currently
allowed and could lead to observable effects in neutrinoless double beta decay,
conversion in nuclei and experiments. We
also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected.
Improved figures 3 and
Suizid und Internet
The number of people aged 14 and older that use the Internet in Germany has doubled to 35.7 millions (55.3%) since the year 2000. The Internet also more and more expands into the domain of psychiatry and psychotherapy, and is used by psychiatric patients for information, communication and therapeutic purposes. Nevertheless, the infinite possibilities of the World Wide Web are linked with several advantages and disadvantages. Easily accessible information, numerous opportunities for exchange among like-minded people and therapeutic support from online therapies are juxtaposed with such risks as frequently lacking quality and transparency of the available information, possible enhancement of social withdrawal and certain Websites concerning suicide. If the mentioned risks of the Internet rather provoke new problems and trigger suicidality or if the chance of an easily accessible online discussion rather results in mental relief cannot be answered generally
- …
