68 research outputs found

    A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China

    Get PDF
    As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000–2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world

    An enhanced particle swarm optimization algorithm for multi-modal functions

    Full text link
    The particle swarm optimization algorithm has been frequently employed to solve various optimization problems. Although the algorithm is performing satisfactorily while tackling unit-modal optimizations, enhancements in dealing with multi-modal functions are indeed desirable. Convergence of particles to the optimum solution is a primary and traditional requirement, however, this is achieved only after all the solutions space has been covered and evaluated. In this work, the focus is directed towards maintaining sufficient divergence of particles in multi-modal problems, by developing an alternative social interaction scheme among the swarm members. Particularly, a multiple-leaders strategy is employed in the new PSO algorithm to prevent pre-mature convergence. Results from benchmark problems are included to illustrate the effectiveness of the proposed method. © 2007 IEEE
    corecore