2,212 research outputs found
Fluctuation Scaling, Taylor’s Law, and Crime
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor’s law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor’s law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057±0.026) while burglary exhibited a greater exponent (α = 1.292±0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor’s law exponents from 1.43±0.12 (Drugs) to 2.094±0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation
Study on conjugate heat transfer in a photovoltaic wall
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Building a dense surface map incrementally from semi-dense point cloud and RGBimages
© 2015, Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg. Building and using maps is a fundamental issue for bionic robots in field applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped objects
Numerical Analysis of a Dual Polarization Mode-Locked Laser with a Quarter Wave Plate
Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time
Dynamics of wetlands and their effects on carbon emissions in China coastal region - Case study in Bohai Economic Rim
Wetlands are one of the largest carbon sinks in the world due to their large carbon storage, potential for carbon sequestration in peat formation, sediment deposition and plant biomass. However, rapid economic development is causing changes to wetland carbon storage. China has participated in the implementation of the Kyoto Protocol and is decreasing its carbon emissions. Analyzing the carbon changes that are caused by wetland dynamics may provide some insights regarding decreasing carbon emissions. Therefore, wetland data from 1985, 1995 and 2005 were extracted from remote sensing images. Using spatial analysis and statistics, we determined that the water body area continued to increase, whereas the swamp, floodplain and shallow areas tended to decrease during the period from 1985 to 2005. Those changes caused wetland carbon stock to decrease. The conversion of other land use categories to wetland was the primary cause of carbon stock loss. Therefore, it is more beneficial for China to decrease per capita carbon emissions by decreasing carbon emissions from the conversion of other land use categories to wetlands. (C) 2013 Elsevier Ltd. All rights reserved.Wetlands are one of the largest carbon sinks in the world due to their large carbon storage, potential for carbon sequestration in peat formation, sediment deposition and plant biomass. However, rapid economic development is causing changes to wetland carbon storage. China has participated in the implementation of the Kyoto Protocol and is decreasing its carbon emissions. Analyzing the carbon changes that are caused by wetland dynamics may provide some insights regarding decreasing carbon emissions. Therefore, wetland data from 1985, 1995 and 2005 were extracted from remote sensing images. Using spatial analysis and statistics, we determined that the water body area continued to increase, whereas the swamp, floodplain and shallow areas tended to decrease during the period from 1985 to 2005. Those changes caused wetland carbon stock to decrease. The conversion of other land use categories to wetland was the primary cause of carbon stock loss. Therefore, it is more beneficial for China to decrease per capita carbon emissions by decreasing carbon emissions from the conversion of other land use categories to wetlands. (C) 2013 Elsevier Ltd. All rights reserved
RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability.
Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools
Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to "zero-tolerance" policies by unveiling the crime and/or property types most likely to affect each other
3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes
- …
