412 research outputs found
Role of strain in the blistering of hydrogen-implanted silicon
The authors investigated the physical mechanisms underlying blistering in hydrogen-implanted silicon by examining the correlation between implantation induced damage, strain distribution, and vacancy diffusion. Using Rutherford backscattering, scanning electron microscopy, and atomic force microscopy, they found that the depth of blisters coincided with that of maximum implantation damage. A model based on experimental results is presented showing the effect of tensile strain on the local diffusion of vacancies toward the depth of maximum damage, which promotes the nucleation and growth of platelets and ultimately blisters. © 2006 American Institute of Physics
H-induced platelet and crack formation in hydrogenated epitaxial Si/Si <inf>0.98</inf>B <inf>0.02</inf>/Si structures
An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxial Si Si0.98 B0.02 Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98 B0.02 layer. For hydrogenated Si containing a 130 nm thick Si0.98 B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98 B0.02 layer to 3 nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation. © 2006 American Institute of Physics
Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation
We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics
Individually Frequency Tunable Dual- and Triple-band Filters in a Single Cavity
© 2013 IEEE. This paper presents a new class of second-order individually and continuously tunable dual- and triple-band bandpass filters in a single metal cavity. Each passband is realized by two identical metal posts. These dual- and triple-band tunable filters are achieved by putting two or three identical sets of metal-post pair in a single metal cavity. Metal screws are co-designed as a part of the metal posts to control their insertion depth inside the cavity. In this way, the resonant frequencies can be continuously controlled and designed at the desired frequency bands. Moreover, the distance between the two metal posts in a post pair can be freely tuned. Thus, the external quality factor (Qe) and coupling coefficient (k) between the adjacent modes can be easily adjusted to meet the specified requirement in synthesis design. At the bottom of the cavity, some grooves are used to extend the tunable frequency range and make the resonant frequency linearly varied with the height of the metal post. The center frequency of each passband can be independently tuned with a frequency range of 0.8-3.2 GHz and tunable ratio of 4. Finally, the continuously tunable dual- and triple-band bandpass filters prototypes with second order response are designed and fabricated, of which each passband can be individually tuned with a large tuning range
Triple-Mode Cavity Bandpass Filter on Doublet with Controllable Transmission Zeros
© 2013 IEEE. On the basis of doublet and its properties, a class of multiple-mode narrow band bandpasss filter is designed and fabricated by simultaneously exploiting the three resonant modes in a single rectangular cavity: TE101, TE011, and TM110 modes. The input/output ports of the proposed filter are fed by coupling a microstrip line to a slot on the side wall of a rectangular cavity. Different modes are excited by changing the position and shape of the two slots at input and output of the rectangular cavity without any intra-cavity coupling. Besides three poles within the passband, a pair of transmission zeros (TZs) is achieved, which can be controlled independently by setting the positions of the two TZs at the lower and/or upper stopband. High stopband attenuation and high filtering selectivity are achieved by considerably allocating three transmission poles and two zeros. In order to verify the proposed theory, two filter prototypes are fabricated and measured
In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson
An in vitro culture procedure was established to induce protocorm-like bodies (PLBs) from leaf segments of the Phalaenopsis bellina (Rchb.f.) Christenson directly from epidermal cells without intervening callus on ½ strength modified Murashige and Skoog (MS) (in Physiol Plant 15:473–497, 1962) medium supplemented with 1-Naphthaleneacetic acid (NAA; 0, 0.1, 1 mg/l) and Thidiazuron (TDZ; 0, 0.1, 1, 3 mg/l). The best response was established at 3 mg/l TDZ which induced 78% of leaf segments to form a mean number of 14 PLBs per explant after 16 weeks of culture. No PLBs were found when leaf segments were cultured on ½ strength modified MS media supplemented with 0.1 and 1 mg/l NAA. The best induction percentage for auxin: cytokinin combination was at the combination of NAA and TDZ at 1.0 and 3.0 mg/l which gave 72% induction with 9 PLBs per explant. Semi-solid ½ strength MS and liquid Vacin and Went (VW) (in Bot Gaz 110:605–613, 1949) medium were used in order to find the highest survival and number of PLBs proliferation after 3 months in culture. Half strength MS showed an average of 9 PLBs in comparison with VW with an average of 5.3 PLBs per explants. Histological observations revealed that the regenerated PLBs were generally formed from the epidermal layers of the posterior regions of the leaf segments. Scanning electron micrograph of PLBs showed the origin of newly formed PLB from the peripheral region of leaf segments
A New Compact and High Gain Circularly-Polarized Slot Antenna Array for Ku-Band Mobile Satellite TV Reception
© 2013 IEEE. A compact and high-gain SIW-fed circularly polarized (CP) slot-antenna array with a stacked feed structure is presented for the application of Ku-band high-data-rate satellite communications. First, a novel probe-fed SIW cavity with four slots etched on the top surface is proposed as a high-gain radiating element for the array. The four slots in the cavity act as a 2\times2 array, and its directivity is 2.15 and 1.43 dB greater than that of the cavity-backed antenna of the same size using ring slot and split ring slot, respectively. Second, a compact 1-4 SIW power divider is designed for exciting a subarray. Third, the 2\times2 subarray is further expanded to an 8\times16 array by adopting an additional layer of 1-32 SIW feeding network to meet the gain requirement of the Ku-band mobile satellite TV reception. Finally, experiments are carried out to verify the designed prototypes. Measured results show that proposed 128-element array has a relative impedance bandwidth of 4.8% (11.84 to 12.42 GHz), AR bandwidth of 130 MHz (12.01 to 12.14 GHz), and a peak gain of 26.8 dBic at 12.06 GHz. Owing to the simple feeding networks and the compact radiating element, the antenna has a compact size of 6.04\lambda 0 \times 11.96\lambda 0 \times 0.1\lambda 0. Experimental results show that the proposed CP antenna array is suitable for applications of Ku-band mobile satellite TV reception
Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures
The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices
Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer
Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations
- …
