284 research outputs found
Water use and water availability constraints to decarbonised electricity systems
Analysis of numerous low carbon electricity strategies have been shown to have very divergent water requirements, normally needed for cooling of thermoelectric power stations.
Our regional river-basin scale analysis of water use for future UK electricity strategies shows that, whilst in the majority of cases freshwater use is expected to decline, pathways with high levels of carbon capture and storage (CCS) will result in significantly elevated and concentrated water demands in a few key river basins. Furthermore, these growing demands are compared to both current water availability, and our expected regional water availability under the impacts of climate change. We identify key freshwater constraints to electricity strategies with high levels of CCS and show how these risks may be mitigated with higher levels of hybrid cooling and alternative cooling water sources
Coordinated operation of gas and electricity systems for flexibility study
The increase interdependencies between electricity and gas systems, driven by gas-fired power plants and gas electricity-driven compressors, necessitates detailed investigation of such interdependencies, especially in the context of increased share of renewable energy sources. 6 In this paper, the value of an integrated approach for operating gas and electricity systems is assessed. An outer approximation with equality relaxation (OA/ER) method is used to deal with the optimization class of mixed integer non-linear problem of integrated operation of gas and electricity systems. This method significantly improved the efficiency of the solution algorithm and achieved nearly 40% reduction in computation time compared to successive linear programming. The value of flexibility technologies including flexible gas compressors, demand side response, battery storage, and power-to-gas is quantified in the operation of integrated gas and electricity systems in GB 2030 energy scenarios for different renewable generation penetration levels. The modeling demonstrates that the flexibility options will enable significant cost savings in the annual operational costs of gas and electricity systems (up to 21%). On the other hand, the analysis carried out indicates that deployment of flexibility technologies support appropriately the interaction between gas and electricity systems
Techno-economic assessment of battery storage and Power-to-Gas: A whole-system approach
The power systems in many countries are undergoing a radical transformation through employing a large capacity of renewable generation technologies such as wind turbine and solar photovoltaic. The power generation by wind and solar resources are variable and difficult to predict. Therefore, growing capacities of such technologies is expected to introduce challenges regarding balancing electricity supply and demand. This paper investigates the role of battery storage and power-to-gas systems to accommodate large capacity of intermittent power generation from wind and solar and therefore facilitates matching electricity supply and demand. The Combined Gas and Electricity Networks (CGEN) model was used to optimize the operation of gas and electricity networks in GB for typical weeks in winter and summer in 2030. The role of different capacity of battery storage and power-to-gas systems in reducing the wind curtailment and operating cost of the system were quantified and compared with the annualized cost of these technologies
Investing in flexibility in an integrated planning of natural gas and power systems
The growing interdependencies between natural gas and power systems, driven by gas-fired generators and gas compressors supplied by electricity, necessitates detailed investigation of the interactions between these vectors, particularly in the context of growing penetration of renewable energy sources. In this research, an expansion planning model for integrated natural gas and power systems is proposed. The model investigates optimal investment in flexibility options such as battery storage, demand side response, and gas-fired generators. The value of these flexibility options is quantified for gas and electricity systems in GB in 2030. The results indicate that the flexibility options could play an important role in meeting the emission targets in the future. However, the investment costs of these options highly impact the future generation mix as well as the type of reinforcements in the natural gas system infrastructure. Through deployment of the flexibility options up to £24.2b annual cost savings in planning and operation of natural gas and power systems could be achieved, compared to the case that no flexibility option is considered
Quantification of flexibility of a district heating system for the power grid
District heating systems (DHS) that generate/consume electricity are increasingly used to provide flexibility to power grids. The quantification of flexibility from a DHS is challenging due to its complex thermal dynamics and time-delay effects. This paper proposes a three-stage methodology to quantify the maximum flexibility of a DHS. The DHS is firstly decomposed into multiple parallel subsystems with simpler topological structures. The maximum flexibility of each subsystem is then formulated as an optimal control problem with time delays in state variables. Finally, the available flexibility from the original DHS is estimated by aggregating the flexibility of all subsystems. Numerical results reveal that a DHS with longer pipelines has more flexibility but using this flexibility may lead to extra actions in equipment such as the opening position adjustment of valves, in order to restore the DHS to normal states after providing flexibility. Impacts of the supply temperature of the heat producer, the heat loss coefficient of buildings and the ambient temperature on the available flexibility were quantified
Hot stuff: Research and policy principles for heat decarbonisation through smart electrification
This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recordThere is a need for major greenhouse gas emission reductions from heating in order to meet global decarbonisation goals. Electricity is expected to meet much of the heat demand currently provided by fossil fuels in the future and heat pumps may have an important role. This electrification transformation is not without challenges. Through a detailed narrative review alongside expert elicitation, we propose four principles for heat decarbonisation via electrification: putting energy efficiency first, valuing heat as a flexible load, understanding the emission impacts of heat electrification and designing electricity tariffs to reward flexibility. As a route to heat decarbonisation, when combined, these principles can offer significant consumer and carbon reduction benefits. In the short term these principles can encourage the smooth integration of heat electrification and in the longer term these principles are expected to reduce the scale of required infrastructural expansion. We propose a number of policy mechanisms which can be used to support these principles including (building) regulation, financial support, carbon standards, energy efficiency obligations and pricing.Engineering and Physical Sciences Research Council (EPSRC
Modelling of an integrated gas and electricity network with significant wind capacity
The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges introduced by wind including non-correlated power output from geographically dispersed wind farms, wind variability and wind uncertainty were studied. In order to address each of the aforementioned challenges an appropriate modelling approach and case studies were used. The impacts of power output from dispersed wind farms on the Great Britain transmission reinforcement were studied using an optimal DC load flow combined with a power generation model. It was shown that Western and Eastern HVDC links play a crucial role to bypass the Scotland to England transmission bottleneck. The impacts of wind variability on the GB gas and electricity network were investigated through application of the Combined gas and Electricity Network (CGEN) Model. Additional gas storage capacity was shown to be an efficient option to compensate for wind variability. Two-stage and multi-stage stochastic programming models were developed to examine the impact of wind forecast uncertainty on the GB electricity and gas networks. Stochastic modelling approaches were shown to be efficient methods for scheduling and operating the system under wind uncertainty. The key contributions of this thesis are the investigation of the impacts of wind generation variability on the gas network, and development of twostage and multi-stage stochastic programming models of integrated gas and electricity network.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
- …
