768 research outputs found

    Tunneling into the normal state of Pr(2-x)CexCuO4

    Full text link
    The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than Tc for the underdoped region and it follows Tc on the overdoped side. This behavior suggests finite pairing amplitude above Tc on the underdoped side

    Human Rights Environment And Development In South Asia

    Get PDF
    The fundamental importance of the issue of Human Rights and the environment to any society is deeply appreciated today

    Evidence for a quantum phase transition in the electron-doped cuprate Pr2-xCexCuO4+d from Hall and resistivity measurements

    Full text link
    The doping and temperature dependence of the Hall coefficient, RH, and ab-plane resistivity in the normal state down to 350mK is reported for oriented films of the electron-doped high-Tc superconductor Pr2-xCexCuO4+d. The doping dependence of b (r=r0+AT^b) and R_sub_H (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.Comment: 11 pages 4 figures Phys. Rev. Lett. 92, 167001 (2004

    Evolution of Superconductivity in Electron-Doped Cuprates: Magneto-Raman Spectroscopy

    Full text link
    The electron-doped cuprates Pr_{2-x}Ce_xCuO_4 and Nd_{2-x}Ce_xCuO_4 have been studied by electronic Raman spectroscopy across the entire region of the superconducting (SC) phase diagram. The SC pairing strength is found to be consistent with a weak-coupling regime except in the under-doped region where we observe an in-gap collective mode at 4.5 k_{B}T_c while the maximum amplitude of the SC gap is ~8 k_{B}T_{c}. In the normal state, doped carriers divide into coherent quasi-particles (QPs) and carriers that remain incoherent. The coherent QPs mainly reside in the vicinity of (\pi/2, \pi/2) regions of the Brillouin zone (BZ). We find that only coherent QPs contribute to the superfluid density in the B_{2g} channel. The persistence of SC coherence peaks in the B_{2g} channel for all dopings implies that superconductivity is mainly governed by interactions between the hole-like coherent QPs in the vicinity of (\pi/2, \pi/2) regions of the BZ. We establish that superconductivity in the electron-doped cuprates occurs primarily due to pairing and condensation of hole-like carriers. We have also studied the excitations across the SC gap by Raman spectroscopy as a function of temperature (T) and magnetic field (H) for several different cerium dopings (x). Effective upper critical field lines H*_{c2}(T, x) at which the superfluid stiffness vanishes and H^{2\Delta}_{c2}(T, x) at which the SC gap amplitude is suppressed by field have been determined; H^{2\Delta}_{c2}(T, x) is larger than H*_{c2}(T, x) for all doping concentrations. The difference between the two quantities suggests the presence of phase fluctuations that increase for x< 0.15. It is found that the magnetic field suppresses the magnitude of the SC gap linearly at surprisingly small fields.Comment: 13 pages, 8 figures; submitted to Phys. Rev.

    Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/1/biom12065-sm-0001-SuppData.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/2/biom12065.pd

    Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/1/biom12065-sm-0001-SuppData.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/2/biom12065.pd
    corecore