768 research outputs found
Tunneling into the normal state of Pr(2-x)CexCuO4
The temperature dependence of the tunneling conductance was measured for
various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state
gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to
vanish above a certain temperature T*. T* is greater than Tc for the underdoped
region and it follows Tc on the overdoped side. This behavior suggests finite
pairing amplitude above Tc on the underdoped side
Human Rights Environment And Development In South Asia
The fundamental importance of the issue of Human Rights and the environment to any society is deeply appreciated today
Evidence for a quantum phase transition in the electron-doped cuprate Pr2-xCexCuO4+d from Hall and resistivity measurements
The doping and temperature dependence of the Hall coefficient, RH, and
ab-plane resistivity in the normal state down to 350mK is reported for oriented
films of the electron-doped high-Tc superconductor Pr2-xCexCuO4+d. The doping
dependence of b (r=r0+AT^b) and R_sub_H (at 350 mK) suggest a quantum phase
transition at a critical doping near x=0.165.Comment: 11 pages 4 figures Phys. Rev. Lett. 92, 167001 (2004
Evolution of Superconductivity in Electron-Doped Cuprates: Magneto-Raman Spectroscopy
The electron-doped cuprates Pr_{2-x}Ce_xCuO_4 and Nd_{2-x}Ce_xCuO_4 have been
studied by electronic Raman spectroscopy across the entire region of the
superconducting (SC) phase diagram. The SC pairing strength is found to be
consistent with a weak-coupling regime except in the under-doped region where
we observe an in-gap collective mode at 4.5 k_{B}T_c while the maximum
amplitude of the SC gap is ~8 k_{B}T_{c}. In the normal state, doped carriers
divide into coherent quasi-particles (QPs) and carriers that remain incoherent.
The coherent QPs mainly reside in the vicinity of (\pi/2, \pi/2) regions of the
Brillouin zone (BZ). We find that only coherent QPs contribute to the
superfluid density in the B_{2g} channel. The persistence of SC coherence peaks
in the B_{2g} channel for all dopings implies that superconductivity is mainly
governed by interactions between the hole-like coherent QPs in the vicinity of
(\pi/2, \pi/2) regions of the BZ. We establish that superconductivity in the
electron-doped cuprates occurs primarily due to pairing and condensation of
hole-like carriers. We have also studied the excitations across the SC gap by
Raman spectroscopy as a function of temperature (T) and magnetic field (H) for
several different cerium dopings (x). Effective upper critical field lines
H*_{c2}(T, x) at which the superfluid stiffness vanishes and
H^{2\Delta}_{c2}(T, x) at which the SC gap amplitude is suppressed by field
have been determined; H^{2\Delta}_{c2}(T, x) is larger than H*_{c2}(T, x) for
all doping concentrations. The difference between the two quantities suggests
the presence of phase fluctuations that increase for x< 0.15. It is found that
the magnetic field suppresses the magnitude of the SC gap linearly at
surprisingly small fields.Comment: 13 pages, 8 figures; submitted to Phys. Rev.
Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/1/biom12065-sm-0001-SuppData.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/2/biom12065.pd
Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/1/biom12065-sm-0001-SuppData.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/2/biom12065.pd
- …
