1,105 research outputs found

    NMR Study of the New Magnetic Superconductor CaK(Fe$0.951Ni0.049)4As4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    Get PDF
    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75^{75}As nuclear magnetic resonance study on single-crystalline CaK(Fe0.951_{0.951}Ni0.049_{0.049})4_4As4_4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the cc axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature TNT_{\rm N} \sim 52 K. The nuclear spin-lattice relaxation rate 1/T1T_1 shows a distinct decrease below TcT_{\rm c} \sim 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T1T_1 data, the hedgehog SVC-type spin correlations are found to be enhanced below TT \sim 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. B rapid communicatio

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    Full text link
    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than \hbar is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π2\pi-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of the arbitrary-quantization.Comment: 6 pages, 5 figure

    Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

    Full text link
    We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO1x_{1-x}Fx_{x}. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity

    Low-temperature Synthesis of FeTe0.5Se0.5 Polycrystals with a High Transport Critical Current Density

    Full text link
    We have prepared high-quality polycrystalline FeTe0.5Se0.5 at temperature as low as 550{\deg}C. The transport critical current density evaluated by the current-voltage characteristics is over 700 A/cm2 at 4.2 K under zero field, which is several times larger than FeTe0.5Se0.5 superconducting wires. The critical current density estimated from magneto-optical images of flux penetration is also similar to this value. The upper critical field of the polycrystalline FeTe0.5Se0.5 at T = 0 K estimated by Werthamer-Helfand-Hohenberg theory is 585 kOe, which is comparable to that of single crystals. This study gives some insight into how to improve the performance of FeTe0.5Se0.5 superconducting wires.Comment: 12 pages, 6 figure

    Hamilton-Jacobi Tunneling Method for Dynamical Horizons in Different Coordinate Gauges

    Full text link
    Previous work on dynamical black hole instability is further elucidated within the Hamilton-Jacobi method for horizon tunneling and the reconstruction of the classical action by means of the null-expansion method. Everything is based on two natural requirements, namely that the tunneling rate is an observable and therefore it must be based on invariantly defined quantities, and that coordinate systems which do not cover the horizon should not be admitted. These simple observations can help to clarify some ambiguities, like the doubling of the temperature occurring in the static case when using singular coordinates, and the role, if any, of the temporal contribution of the action to the emission rate. The formalism is also applied to FRW cosmological models, where it is observed that it predicts the positivity of the temperature naturally, without further assumptions on the sign of the energy.Comment: Standard Latex document, typos corrected, refined discussion of tunneling picture, subsection 5.1 remove

    Competitions of magnetism and superconductivity in FeAs-based materials

    Full text link
    Using the numerical unrestricted Hartree-Fock approach, we study the ground state of a two-orbital model describing newly discovered FeAs-based superconductors. We observe the competition of a (0,π)(0, \pi) mode spin-density wave and the superconductivity as the doping concentration changes. There might be a small region in the electron-doping side where the magnetism and superconductivity coexist. The superconducting pairing is found to be spin singlet, orbital even, and mixed sxy_{xy} + dx2y2_{x^{2}-y^{2}} wave (even parity).Comment: 5 pages, 3 figure

    Fermions tunnelling from the charged dilatonic black holes

    Full text link
    Kerner and Mann's recent work shows that, for an uncharged and non-rotating black hole, its Hawking temperature can be exactly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein-Maxwell-Dilaton-Axion (EMDA) black hole and the rotating Kaluza-Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.Comment: 16 pages, revised version to appear in Class. Quant. Gra

    Superconducting Fluctuations and the Pseudogap in the Slightly-overdoped High-Tc Superconductor TlSr2CaCu2O6.8: High Magnetic Field NMR Studies

    Full text link
    From measurements of the ^{63}Cu Knight shift (K) and the nuclear spin-lattice relaxation rate (1/T_{1}) under magnetic fields from zero up to 28 T in the slightly overdoped superconductor TlSr_{2}CaCu_{2}O_{6.8} (T_{c}=68 K), we find that the pseudogap behavior, {\em i.e.}, the reductions of 1/T_{1}T and K above T_{c} from the values expected from the normal state at high T, is strongly field dependent and follows a scaling relation. We show that this scaling is consistent with the effects of the Cooper pair density fluctuations. The present finding contrasts sharply with the pseudogap property reported previously in the underdoped regime where no field effect was seen up to 23.2 T. The implications are discussed.Comment: 10 pages, 4 GIF figures, to be published in Phys. Rev. Let
    corecore