1,195 research outputs found

    Magnetic and transport properties of iron-platinum arsenide Ca10(Pt4-{\delta}As8)(Fe2-xPtxAs2)5 single crystal

    Full text link
    We report superconducting properties of single crystalline Ca10(Pt4-{\delta}As8)(Fe2-xPtxAs2)5 by X-ray diffraction, magnetization, resistivity, and magneto-optical imaging measurements. The magnetization measurements reveal fish-tail hysteresis loop and relatively high critical current density Jc ~ 0.8\times105 A/cm2 at low temperatures. The exponential temperature dependence of Jc, which arises from nonlinear effective flux-creep activation energy, has been observed. Upper critical field determined by resistive transition shows a relatively large anisotropy. The magneto-optical images reveal homogenous current flow within the crystal.Comment: 6 pages, 6 figures, Accepted for publication in Phys. Rev.

    NMR Study of the New Magnetic Superconductor CaK(Fe$0.951Ni0.049)4As4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    Get PDF
    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75^{75}As nuclear magnetic resonance study on single-crystalline CaK(Fe0.951_{0.951}Ni0.049_{0.049})4_4As4_4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the cc axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature TNT_{\rm N} \sim 52 K. The nuclear spin-lattice relaxation rate 1/T1T_1 shows a distinct decrease below TcT_{\rm c} \sim 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T1T_1 data, the hedgehog SVC-type spin correlations are found to be enhanced below TT \sim 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. B rapid communicatio

    NMR studies of the incommensurate helical antiferromagnet EuCo2P2 : determination of the antiferromagnetic propagation vector

    Get PDF
    Recently Ding et al. [Phys. Rev. B 95, 184404 (2017)] reported that their nuclear magnetic resonance (NMR) study on EuCo2_2As2_2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153^{153}Eu, 31^{31}P and 59^{59}Co NMR measurements on the helical antiferromagnet EuCo2_2P2_2 with an AFM ordering temperature TNT_{\rm N} = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153^{153}Eu and 31^{31}P NMR spectra on single crystalline EuCo2_2P2_2 in zero magnetic field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59^{59}Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0, 0, 0.73 ±\pm 0.09)2π\pi/cc where cc is the cc-axis lattice parameter. The temperature dependence of k is also discussed.Comment: 8 pages, 10 figures, accepted for publication in Phys. Rev. B. arXiv admin note: substantial text overlap with arXiv:1704.0629

    The role of globular heads of the C1q receptor in HPV 16 E2-induced human cervical squamous carcinoma cell apoptosis is associated with p38 MAPK/JNK activation

    No full text
    BACKGROUND Human papillomavirus type 16 (HPV 16) E2 protein is a multifunctional DNA-binding protein. HPV 16 E2 regulates many biological responses, including DNA replication, gene expression, and apoptosis. The purpose of this study was to investigate the relationship among the receptor for globular heads of the human C1q (gC1qR) gene expression, HPV 16 E2 transfection and apoptosis regulation in human cervical squamous carcinoma cells (C33a and SiHa). METHODS gC1qR expression was examined in C33a and SiHa cells using real-time PCR and Western blot analysis. Apoptosis of C33a and SiHa cells was assessed by flow cytometry. C33a and SiHa cell viability, migration and proliferation were detected using the water-soluble tetrazolium salt (WST-1) assay, a transwell assay and 3H-thymidine incorporation into DNA (3H-TdR), respectively. RESULTS C33a and SiHa cells that were transfected with a vector encoding HPV 16 E2 displayed significantly increased gC1qR gene expression and p38 mitogen-activated protein kinase (p38 MAPK)/c-jun N-terminal kinase (JNK) activation as well as up-regulation of cellular apoptosis, which was abrogated by the addition of gC1qR small interfering RNA (siRNA). Furthermore, the changes in C33a and SiHa cell viability, migration and proliferation that were observed upon HPV 16 E2 transfection were abrogated by SB203580 (a p38 MAPK inhibitor) or SP600125 (a JNK inhibitor) treatment. CONCLUSION These data support a mechanism whereby HPV 16 E2 induces apoptosis by silencing the gC1qR gene or inhibiting p38 MAPK/JNK signalling in cervical squamous cell carcinoma.This study was supported by grants from the National Natural Science Foundation of China (No. 81000251) and the Nanjing Medical Science and Technique Development Foundation

    Low-temperature Synthesis of FeTe0.5Se0.5 Polycrystals with a High Transport Critical Current Density

    Full text link
    We have prepared high-quality polycrystalline FeTe0.5Se0.5 at temperature as low as 550{\deg}C. The transport critical current density evaluated by the current-voltage characteristics is over 700 A/cm2 at 4.2 K under zero field, which is several times larger than FeTe0.5Se0.5 superconducting wires. The critical current density estimated from magneto-optical images of flux penetration is also similar to this value. The upper critical field of the polycrystalline FeTe0.5Se0.5 at T = 0 K estimated by Werthamer-Helfand-Hohenberg theory is 585 kOe, which is comparable to that of single crystals. This study gives some insight into how to improve the performance of FeTe0.5Se0.5 superconducting wires.Comment: 12 pages, 6 figure
    corecore