1,195 research outputs found
Magnetic and transport properties of iron-platinum arsenide Ca10(Pt4-{\delta}As8)(Fe2-xPtxAs2)5 single crystal
We report superconducting properties of single crystalline
Ca10(Pt4-{\delta}As8)(Fe2-xPtxAs2)5 by X-ray diffraction, magnetization,
resistivity, and magneto-optical imaging measurements. The magnetization
measurements reveal fish-tail hysteresis loop and relatively high critical
current density Jc ~ 0.8\times105 A/cm2 at low temperatures. The exponential
temperature dependence of Jc, which arises from nonlinear effective flux-creep
activation energy, has been observed. Upper critical field determined by
resistive transition shows a relatively large anisotropy. The magneto-optical
images reveal homogenous current flow within the crystal.Comment: 6 pages, 6 figures, Accepted for publication in Phys. Rev.
NMR Study of the New Magnetic Superconductor CaK(Fe$0.951Ni0.049)4As4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity
Coexistence of a new-type antiferromagnetic (AFM) state, the so-called
hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by
As nuclear magnetic resonance study on single-crystalline
CaK(FeNi)As. The hedgehog SVC order is clearly
demonstrated by the direct observation of the internal magnetic induction along
the axis at the As1 site (close to K) and a zero net internal magnetic
induction at the As2 site (close to Ca) below an AFM ordering temperature
52 K. The nuclear spin-lattice relaxation rate 1/ shows
a distinct decrease below 10 K, providing also unambiguous
evidence for the microscopic coexistence. Furthermore, based on the analysis of
the 1/ data, the hedgehog SVC-type spin correlations are found to be
enhanced below 150 K in the paramagnetic state. These results
indicate the hedgehog SVC-type spin correlations play an important role for the
appearance of SC in the new magnetic superconductor.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. B rapid
communicatio
NMR studies of the incommensurate helical antiferromagnet EuCo2P2 : determination of the antiferromagnetic propagation vector
Recently Ding et al. [Phys. Rev. B 95, 184404 (2017)] reported that their
nuclear magnetic resonance (NMR) study on EuCoAs successfully
characterized the antiferromagnetic (AFM) propagation vector of the
incommensurate helix AFM state, showing that NMR is a unique tool for
determination of the spin structures in incommensurate helical AFMs. Motivated
by this work, we have carried out Eu, P and Co NMR
measurements on the helical antiferromagnet EuCoP with an AFM ordering
temperature = 66.5 K. An incommensurate helical AFM structure was
clearly confirmed by Eu and P NMR spectra on single crystalline
EuCoP in zero magnetic field at 1.6 K and its external magnetic field
dependence. Furthermore, based on Co NMR data in both the paramagnetic
and the incommensurate AFM states, we have determined the model-independent
value of the AFM propagation vector k = (0, 0, 0.73 0.09)2/ where
is the -axis lattice parameter. The temperature dependence of k is also
discussed.Comment: 8 pages, 10 figures, accepted for publication in Phys. Rev. B. arXiv
admin note: substantial text overlap with arXiv:1704.0629
The role of globular heads of the C1q receptor in HPV 16 E2-induced human cervical squamous carcinoma cell apoptosis is associated with p38 MAPK/JNK activation
BACKGROUND Human papillomavirus type 16 (HPV 16) E2 protein is a multifunctional DNA-binding protein. HPV 16 E2 regulates many biological responses, including DNA replication, gene expression, and apoptosis. The purpose of this study was to investigate the relationship among the receptor for globular heads of the human C1q (gC1qR) gene expression, HPV 16 E2 transfection and apoptosis regulation in human cervical squamous carcinoma cells (C33a and SiHa). METHODS gC1qR expression was examined in C33a and SiHa cells using real-time PCR and Western blot analysis. Apoptosis of C33a and SiHa cells was assessed by flow cytometry. C33a and SiHa cell viability, migration and proliferation were detected using the water-soluble tetrazolium salt (WST-1) assay, a transwell assay and 3H-thymidine incorporation into DNA (3H-TdR), respectively. RESULTS C33a and SiHa cells that were transfected with a vector encoding HPV 16 E2 displayed significantly increased gC1qR gene expression and p38 mitogen-activated protein kinase (p38 MAPK)/c-jun N-terminal kinase (JNK) activation as well as up-regulation of cellular apoptosis, which was abrogated by the addition of gC1qR small interfering RNA (siRNA). Furthermore, the changes in C33a and SiHa cell viability, migration and proliferation that were observed upon HPV 16 E2 transfection were abrogated by SB203580 (a p38 MAPK inhibitor) or SP600125 (a JNK inhibitor) treatment. CONCLUSION These data support a mechanism whereby HPV 16 E2 induces apoptosis by silencing the gC1qR gene or inhibiting p38 MAPK/JNK signalling in cervical squamous cell carcinoma.This study was supported by grants from the National Natural Science Foundation of China (No. 81000251) and the Nanjing Medical Science and Technique Development Foundation
Low-temperature Synthesis of FeTe0.5Se0.5 Polycrystals with a High Transport Critical Current Density
We have prepared high-quality polycrystalline FeTe0.5Se0.5 at temperature as
low as 550{\deg}C. The transport critical current density evaluated by the
current-voltage characteristics is over 700 A/cm2 at 4.2 K under zero field,
which is several times larger than FeTe0.5Se0.5 superconducting wires. The
critical current density estimated from magneto-optical images of flux
penetration is also similar to this value. The upper critical field of the
polycrystalline FeTe0.5Se0.5 at T = 0 K estimated by
Werthamer-Helfand-Hohenberg theory is 585 kOe, which is comparable to that of
single crystals. This study gives some insight into how to improve the
performance of FeTe0.5Se0.5 superconducting wires.Comment: 12 pages, 6 figure
- …
