2,035 research outputs found

    Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc

    Full text link
    Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor deposition method. The films are phase-pure, oxidation-free and continuous. The 7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0) reported in MgB2 with the same thickness. The critical current density of ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~ 10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the excellent superconducting properties of ultrathin MgB2 films with thicknesses between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table

    Additive manufacturing of monolithic microwave dielectric ceramic filters via digital light processing

    Get PDF
    Microwave dielectric ceramics are employed in filters as electromagnetic wave propagation media. Based on additive manufacturing (AM) techniques, microwave dielectric ceramic filters with complex and precise structures can be fabricated to satisfy filtering requirements. Digital light processing (DLP) is a promising AM technique that is capable of producing filters with high accuracy and efficiency. In this paper, monolithic filters made from Al2O3 and TiO2, with a molar ratio of 9:1 (0.9 Al2O3-0.1 TiO2), were fabricated by DLP. The difference in the dielectric properties between the as-sintered and post-annealed samples at different temperatures was studied. The experimental results showed that when sintered at 1550 °C for 2 h and post annealed at 1000 °C for 5 h, 0.9 Al2O3-0.1 TiO2 exhibited excellent dielectric properties: εr = 12.4, Q × f = 111,000 GHz, τf = +1.2 ppm/°C. After comparing the measured results with the simulated ones in the passband from 6.5 to 9 GHz, it was concluded that the insertion loss (IL) and return loss (RL) of the filter meet the design requirements

    Validated prediction of weld residual stresses in austenitic steel pipe girth welds before and after thermal ageing, Part 2: modelling and validation

    Get PDF
    An extensive finite element simulation campaign was undertaken to examine the complete manufacturing history and high temperature thermal ageing of thick-walled girth-welded austenitic steel pipes fabricated from Esshete 1250 austenitic steel. The simulations examined the impacts of prior quenching of pipe material, fabrication of closely adjacent welds, and axial restraint during welding. The simulations considered both simple isotropic and kinematic hardening behaviour, and a large matrix of Lemaitre-Chaboche mixed isotropic-kinematic hardening material constitutive models, with a focus on examining the most accurate evolutionary hardening behaviour for weld metal. High temperature (650°C) service exposure was modelled using an RCC-MR type creep model, and the sensitivity of the predicted relaxation to variability in the model parameters was assessed. The predicted residual stresses were validated using measurements made with the deep hole and incremental deep hole drilling techniques and the contour method

    Current conservation in two-dimensional AC-transport

    Get PDF
    The electric current conservation in a two-dimensional quantum wire under a time dependent field is investigated. Such a conservation is obtained as the global density of states contribution to the emittance is balanced by the contribution due to the internal charge response inside the sample. However when the global partial density of states is approximately calculated using scattering matrix only, correction terms are needed to obtain precise current conservation. We have derived these corrections analytically using a specific two-dimensional system. We found that when the incident energy EE is near the first subband, our result reduces to the one-dimensional result. As EE approaches to the nn-th subband with n>1n>1, the correction term diverges. This explains the systematic deviation to precise current conservation observed in a previous numerical calculation.Comment: 12 pages Latex, submitted to Phys. Rev.
    corecore