62 research outputs found

    Functional MRI study of neurovascular coupling in patients with non-lesional epilepsy

    Get PDF
    ObjectiveThe diagnosis of patients with non-lesional epilepsy (NLE) is relatively challenging because of the absence of a clear focus on imaging, and the underlying pathological mechanism remains unclear. The neuronal activity and functional connectivity of NLE patients are significantly abnormal, and the neuronal activity of epilepsy patients is closely related to cerebral blood flow (CBF). Neurovascular coupling (NVC) offers insights into the relationship between neuronal activity and CBF. Hence, we intend to explore the alterations of NVC in NLE patients and their influences on cognitive function.MethodsClinical data of 24 patients with NLE (15 female; age range 19–40 years; median age 30.5 years) and 39 healthy controls (27 female; age range 19–40 years; median age 30 years) were collected, and resting-state functional magnetic resonance imaging (rs-fMRI) and 3D arterial spin labeling (ASL) were performed. The imaging indexes of amplitude of low-frequency fluctuation (ALFF) and CBF were calculated, respectively, by post-processing analysis. The differences in CBF, ALFF and CBF/ALFF ratio between the two groups were analyzed, along with correlation with clinical data of NLE patients.ResultsCompared with the healthy controls, the CBF of the right parahippocampal gyrus was significantly decreased, and the CBF/ALFF ratio of the right inferior parietal, but supramarginal and angular gyri was significantly increased in NLE patients (p < 0.001). Moreover, the CBF/ALFF ratio was positively correlated with epilepsy depression score (r = 0.546, p = 0.006).ConclusionNLE patients showed abnormal local NVC, which was associated with the severity of depression. The combined application of rs-fMRI and ASL can comprehensively evaluate the neuronal activity and cerebral blood perfusion in patients with NLE. The abnormal NVC is of great significance for us to explore the central mechanism of the occurrence and development of NLE

    Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI

    Get PDF
    ObjectiveTo investigate the changes of brain network in epilepsy patients without intracranial lesions under resting conditions.MethodsTwenty-six non-lesional epileptic patients and 42 normal controls were enrolled for BOLD-fMRI examination. The differences in brain network topological characteristics and functional network connectivity between the epilepsy group and the healthy controls were compared using graph theory analysis and independent component analysis.ResultsThe area under the curve for local efficiency was significantly lower in the epilepsy patients compared with healthy controls, while there were no differences in global indicators. Patients with epilepsy had higher functional connectivity in 4 connected components than healthy controls (orbital superior frontal gyrus and medial superior frontal gyrus, medial superior frontal gyrus and angular gyrus, superior parietal gyrus and paracentral lobule, lingual gyrus, and thalamus). In addition, functional connectivity was enhanced in the default mode network, frontoparietal network, dorsal attention network, sensorimotor network, and auditory network in the epilepsy group.ConclusionThe topological characteristics and functional connectivity of brain networks are changed in in non-lesional epilepsy patients. Abnormal functional connectivity may suggest reduced brain efficiency in epilepsy patients and also may be a compensatory response to brain function early at earlier stages of the disease

    Hyperleptinemia Contributes to Antipsychotic Drug-Associated Obesity and Metabolic Disorders

    Get PDF
    Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs

    Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield

    Get PDF
    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity
    corecore