34 research outputs found

    klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes.

    Get PDF
    INTRODUCTION AND OBJECTIVES: The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development. METHODS AND RESULTS: Using Transcription Activator-Like Effector Nucleases (TALEN) we generated a klf2a mutant (klf2ash317) with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC) development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl), a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17) in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants. CONCLUSIONS: The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development

    Evidence that involucrin, a marker for differentiation, is oxygen regulated in human squamous cell carcinomas

    Get PDF
    Hypoxia is associated with poor prognosis in squamous cell carcinomas affecting both local control and distant spread (Hockel et al., 1996a, 1996b, 1999; Nordsmark et al, 1996; Fyles et al, 2002; Kaanders et al, 2002). Local control is believed to depend on local radiation response while distant spread is thought to depend, at least in part, on the induction of oxygen-regulated proteins. In order to test this, pimonidazole, an extrinsic marker for tissue hypoxia (Arteel et al, 1995; Kennedy et al, 1997; Varia et al, 1998; Raleigh et al, 1999), with prognostic value (Kaanders et al, 2002) was used to examine whether ORPs such as VEGF (Raleigh et al, 1998a), metallothionein (Raleigh et al, 2000), HIF-1α (Janssen et al, 2002), Glut-1 (Airley et al, 2003) and CAIX (Olive et al, 2001) were, in fact, associated with cellular hypoxia in human tumours. Unexpectedly, VEGF and metallothionein (MT) were not expressed in the majority of hypoxic cells in squamous cell carcinomas (Raleigh et al, 1998a, 2000) even though these ORPs were induced by hypoxia in experimental systems (Shweiki et al, 1992; Raleigh et al, 1998b; Murphy et al, 1999)

    The interstitium in cardiac repair: role of the immune-stromal cell interplay

    Get PDF
    Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases
    corecore