5,644 research outputs found

    Numerical and Monte Carlo Bethe ansatz method: 1D Heisenberg model

    Get PDF
    In this paper we present two new numerical methods for studying thermodynamic quantities of integrable models. As an example of the effectiveness of these two approaches, results from numerical solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained by thermodynamics Bethe ansatz (TBA) and Quantum Transfer Matrix (QTM).Comment: 8 pages, 6 figure

    One dimensional model for doubly degenerate electrons

    Get PDF
    A Hubbard-like model with SU(4) symmetry for electrons with two-fold orbital degeneracy is studied extensively. Exact solution in one dimension is derived by means of Bethe ansatz, where the sites are supposed to be occupied by at most two electrons. The features of ground state and excited states for repulsive coupling are shown. For finite N number of electrons, the configurations of quantum numbers are given explicitly and the spectra of excitations are obtained by solving the Bethe-ansatz equation numerically. For infinite N, the ground state and various kinds of low-lying excitations are obtained on the basis of thermodynamics limit.Comment: Revtex, 21 pages including 9 figures, PRB versio

    Thermodynamics of SU(2) bosons in one dimension

    Full text link
    On the basis of Bethe ansatz solution of two-component bosons with SU(2) symmetry and δ\delta-function interaction in one dimension, we study the thermodynamics of the system at finite temperature by using the strategy of thermodynamic Bethe ansatz (TBA). It is shown that the ground state is an isospin "ferromagnetic" state by the method of TBA, and at high temperature the magnetic property is dominated by Curie's law. We obtain the exact result of specific heat and entropy in strong coupling limit which scales like TT at low temperature. While in weak coupling limit, it is found there is still no Bose-Einstein Condensation (BEC) in such 1D system.Comment: 7 page

    A New Phase Transition Related to the Black Hole's Topological Charge

    Full text link
    The topological charge ϵ\epsilon of AdS black hole is introduced in Ref.[1,2], where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat CϵC_{\epsilon} and determine the phase transition critical point. Secondly, the TrT-r curve and TST-S curve are investigated and they exhibit an interesting van der Waals system's behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system's swallow tail behavior is observed when ϵ>ϵc\epsilon>\epsilon_{c} in the FTF-T graph. What's more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.Comment: 11 pages, 5 figure

    Attractive Interaction between Vortex and Anti-vortex in Holographic Superfluid

    Full text link
    Annihilation process of a pair of vortices in holographic superfluid is numerically simulated. The process is found to consist of two stages which are amazingly separated by vortex size 2r2r. The separation distance δ(t)\delta(t) between vortex and anti-vortex as a function of time is well fitted by α(t0t)n\alpha (t_{0}-t)^{n}, where the scaling exponent n=1/2n=1/2 for δ(t)>2r\delta (t)>2r, and n=2/5n=2/5 for δ(t)<2r\delta(t)<2r. Then the approaching velocity and acceleration as functions of time and as functions of separation distance are obtained. Thus the attractive force between vortex and anti-vortex is derived as f(δ)1/δ3f(\delta)\propto 1/\delta^{3} for the first stage, and f(δ)1/δ4f(\delta)\propto 1/\delta^{4} for the second stage. In the end, we explained why the annihilation rate of vortices in turbulent superfluid system obeys the two-body decay law when the vortex density is low.Comment: 14 pages, 5 figure
    corecore