13,022 research outputs found

    Probing the excited-state quantum phase transition through statistics of Loschmidt echo and quantum work

    Full text link
    By analyzing the probability distributions of the Loschmidt echo (LE) and quantum work, we examine the nonequilibrium effects of a quantum many-body system, which exhibits an excited-state quantum phase transition (ESQPT). We find that depending on the value of the controlling parameter the distribution of the LE displays different patterns. At the critical point of the ESQPT, both the averaged LE and the averaged work show a cusplike shape. Furthermore, by employing the finite-size scaling analysis of the averaged work, we obtain the critical exponent of the ESQPT. Finally, we show that at the critical point of ESQPT the eigenstate is a highly localized state, further highlighting the influence of the ESQPT on the properties of the many-body system.Comment: 10 pages, 13 figures; accepted for publication in Physical Review

    The quantum-classical correspondence principle for work distributions

    Full text link
    For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with one degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions, and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.Comment: 22 pages, 9 figure

    Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

    Full text link
    We develop a method for achieving scalable transmission stabilization and switching of NN colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in NN-sequence transmission is described by a generalized NN-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of MM out of NN soliton sequences. Numerical simulations for single-waveguide transmission with a system of NN coupled nonlinear Schr\"odinger equations with 2N42 \le N \le 4 show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.Comment: 37 pages, 7 figures, Eur. Phys. J. D (accepted

    Ergodicity and Mixing in Quantum Dynamics

    Full text link
    After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy.Comment: 10 pages, 6 figures and 1 tabl

    Jarzynski Equality, Crooks Fluctuation Theorem and the Fluctuation Theorems of Heat for Arbitrary Initial States

    Full text link
    By taking full advantage of the dynamic property imposed by the detailed balance condition, we derive a new refined unified fluctuation theorem (FT) for general stochastic thermodynamic systems. This FT involves the joint probability distribution functions of the final phase space point and a thermodynamic variable. Jarzynski equality, Crooks fluctuation theorem, and the FTs of heat as well as the trajectory entropy production can be regarded as special cases of this refined unified FT, and all of them are generalized to arbitrary initial distributions. We also find that the refined unified FT can easily reproduce the FTs for processes with the feedback control, due to its unconventional structure that separates the thermodynamic variable from the choices of initial distributions. Our result is heuristic for further understanding of the relations and distinctions between all kinds of FTs, and might be valuable for studying thermodynamic processes with information exchange.Comment: 15 pages, 1 tabl

    Work Distributions in 1-D Fermions and Bosons with Dual Contact Interactions

    Full text link
    We extend the well-known static duality \cite{girardeau1960relationship, cheon1999fermion} between 1-D Bosons and 1-D Fermions to the dynamical version. By utilizing this dynamical duality we find the duality of non-equilibrium work distributions between interacting 1-D bosonic (Lieb-Liniger model) and 1-D fermionic (Cheon-Shigehara model) systems with dual contact interactions. As a special case, the work distribution of the Tonks-Girardeau (TG) gas is identical to that of 1-D free fermionic system even though their momentum distributions are significantly different. In the classical limit, the work distributions of Lieb-Liniger models (Cheon-Shigehara models) with arbitrary coupling strength converge to that of the 1-D noninteracting distinguishable particles, although their elemetary excitations (quasi-particles) obey different statistics, e.g. the Bose-Einstein, the Fermi-Dirac and the fractional statistics. We also present numerical results of the work distributions of Lieb-Liniger model with various coupling strengths, which demonstrate the convergence of work distributions in the classical limit.Comment: 8 pages, 2 figure, 2 table

    Automating an orbiter approach to Space Station Freedom to minimize plume impingement

    Get PDF
    The Space shuttle orbiter Reaction Control System's (RCS) plume impingement during proximity operations with Space Station Freedom (SSF) is a structural design driver for the SSF solar panels and radiators. A study underway at JSC is investigating whether the use of an automated approach controller could result in the reduction of plume impingement induced loads during orbiter approach to SSF. Ongoing real time person-in-the-loop (PIL) simulations of an orbiter approaching the SSF show that orbiter trajectory control can vary significantly from one pilot to the next. This variation is a cause for concern since current analyses predict that plume impingement loads resulting from PIL orbiter approaches may exceed the solar panel and radiator load limits. The use of an automated approach controller is expected to reduce peak loads by both minimizing orbiter translational jet firings in certain directions and controlling the frequency at which they occur during various phases of the approach
    corecore