484 research outputs found
Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in orthorhombic DyMnO3
Synchrotron x-ray diffraction and resonant magnetic scattering experiments on
single crystal DyMnO3 have been carried out between 4 and 40 K. Below TN(Dy) =
5K, the Dy magnetic moments order in a commensurate structure with propagation
vector 0.5 b*. Simultaneous with the Dy magnetic ordering, an incommensurate
lattice modulation with propagation vector 0.905 b* evolves while the original
Mn induced modulation is suppressed and shifts from 0.78 b* to 0.81 b*. This
points to a strong interference of Mn and Dy induced structural distortions in
DyMnO3 besides a magnetic coupling between the Mn and Dy magnetic moments.Comment: submitted to Phys. Rev. B Rapid Communication
Anomalous thermal expansion and strong damping of the thermal conductivity of NdMnO and TbMnO due to 4f crystal-field excitations
We present measurements of the thermal conductivity and the thermal
expansion of NdMnO and TbMnO. In both compounds a splitting of
the multiplet of the ion causes Schottky contributions to
. In TbMnO this contribution arises from a crystal-field splitting,
while in NdMnO it is due to the Nd-Mn exchange coupling. Another
consequence of this coupling is a strongly enhanced canting of the Mn moments.
The thermal conductivity is greatly suppressed in both compounds. The main
scattering process at low temperatures is resonant scattering of phonons
between different energy levels of the multiplets, whereas the complex 3d
magnetism of the Mn ions is of minor importance.Comment: 9 pages including 6 figure
Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites
Orthorhombically distorted perovskite manganites, RMnO3 with R being a
trivalent rare-earth ion, exhibit a variety of magnetic and electric phases
including multiferroic (i.e. concurrently magnetic and ferroelectric) phases
and fascinating magnetoelectric phenomena. We theoretically study the phase
diagram of RMnO3 by constructing a microscopic spin model, which includes not
only the superexchange interaction but also the single-ion anisotropy (SIA) and
the Dzyaloshinsky-Moriya interaction (DMI). Analysis of this model using the
Monte-Carlo method reproduces the experimental phase diagrams as functions of
the R-ion radius, which contain two different multiferroic states, i.e. the
ab-plane spin cycloid with ferroelectric polarization P//a and the bc-plane
spin cycloid with P//c. The orthorhombic lattice distortion or the
second-neighbor spin exchanges enhanced by this distortion exquisitely controls
the keen competition between these two phases through tuning the SIA and DMI
energies. This leads to a lattice-distortion-induced reorientation of P from a
to c in agreement with the experiments. We also discuss spin structures in the
A-type antiferromagnetic state, those in the cycloidal spin states, origin and
nature of the sinusoidal collinear spin state, and many other issues.Comment: 23 pages, 19 figures. Recalculated results after correcting errors in
the assignment of Dzyaloshinsky-Moriya vector
First Principles Study of Structural, Electronic and Magnetic Interplay in Ferroelectromagnetic Yttrium Manganite
We present results of local spin density approximation pseudopotential
calculations for the ferroelectromagnet, yttrium manganite (YMnO3). The origin
of the differences between ferroelectric and non-ferroelectric perovskite
manganites is determined by comparing the calculated properties of yttrium
manganite in its ferroelectric hexagonal and non-ferroelectric orthorhombic
phases. In addition, orthorhombic YMnO3 is compared with the prototypical
non-ferroelectric manganite, lanthanum manganite. We show that, while the
octahedral crystal field splitting of the cubic perovskite structure causes a
centro-symmetric Jahn-Teller distortion around the Mn3+ ion, the markedly
different splitting in hexagonal perovskites creates an electronic
configuration consistent with ferroelectric distortion. We explain the nature
of the distortion, and show that a local magnetic moment on the Mn3+ ion is a
requirement for it to occur.Comment: Replacement of earlier version with error in pseudopotentia
The Effect of - Magnetic Coupling in Multiferroic MnO Crystals
We have established detailed magnetoelectric phase diagrams of
(EuY)TbMnO () and
(Eu,Y)GdMnO (), whose average ionic radii of
-site (: rare earth) cations are equal to that of Tb, in order to
reveal the effect of rare earth 4 magnetic moments on the magnetoelectric
properties. In spite of the same -site ionic radii, the magnetoelectric
properties of the two systems are remarkably different from each other. A small
amount of Tb substitution on sites () totally destroys
ferroelectric polarization along the a axis (), and an increase in Tb
concentration stabilizes the phase. On the other hand, Gd substitution
() extinguishes the phase, and slightly suppresses the
phase. These results demonstrate that the magnetoelectric properties of
MnO strongly depend on the characteristics of the rare earth 4
moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of
Japa
The multiferroic phases of (Eu:Y)MnO3
We report on structural, magnetic, dielectric, and thermodynamic properties
of (Eu:Y)MnO3 for Y doping levels 0 <= x < 1. This system resembles the
multiferroic perovskite manganites RMnO3 (with R= Gd, Dy, Tb) but without the
interference of magnetic contributions of the 4f-ions. In addition, it offers
the possibility to continuously tune the influence of the A-site ionic radii.
For small concentrations x <= 0.1 we find a canted antiferromagnetic and
paraelectric groundstate. For higher concentrations x <= 0.3 ferroelectric
polarization coexists with the features of a long wavelength incommensurate
spiral magnetic phase analogous to the observations in TbMnO3. In the
intermediate concentration range around x = 0.2 a multiferroic scenario is
realized combining weak ferroelectricity and weak ferromagnetism, presumably
due to a canted spiral magnetic structure.Comment: 8 pages, 8 figure
Non-Fermi-Liquid Scaling in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
We study the temperature and field dependence of the magnetic and transport
properties of the non-Fermi-liquid compound Ce(Ru_{1-x}Rh_x)_2Si_2 at x=0.5.
For fields 0.1T the experimental results show signatures of the
presence of Kondo-disorder, expected to be large at this concentration. For
larger fields, however, magnetic and transport properties are controlled by the
coupling of the conduction electrons to critical spin-fluctuations. The
temperature dependence of the susceptibility as well as the scaling properties
of the magnetoresistance are in very good agreement with the predictions of
recent dynamical mean-field theories of Kondo alloys close to a spin-glass
quantum critical point.Comment: 4 pages, 4 figures. Improved discussion. To appear in Phys. Rev. Let
Spatial patterns and drivers of fire occurrence in a Mediterranean environment: a case study of southern Croatia.
Wildfires are an important factor of landscape dynamics in fire-prone environments of the world. In the Mediterranean, one of the most fire-susceptible environments globally, between 45,000 and 50,000 wildfires are recorded every year, causing disturbances in forest and grassland ecosystems. As a Mediterranean country, Croatia faces these problems, averaging over 1000 registered wildfires annually, with the coastal areas dominated by forest fires and continental Croatia by fires on agricultural lands. This research combines various landscape and socio-economic factors in the analysis of fire occurrence in Croatia’s southernmost region of Dalmatia. Around 275 of the largest fires (encompassing 98% of the total burnt area) registered in 2013 were investigated using OLS, and different spatial indices were employed to analyse regional variability in fire distribution. The results revealed that areas more prone to fires are the northern inland areas of Dalmatia and its entire coastal zone. Altitude and vegetation type demonstrated a correlation with fire occurrence, but an increase in population in the study area was also correlated with wildfire occurrence. Regarding vegetation, the grasslands and Mediterranean shrubland (maquis) were found to be the most fire-prone vegetation types in the study region, the distribution of which can be linked to different socio-economic and demographic processes occurring in the Eastern Adriatic
Fermi-liquid instabilities at magnetic quantum phase transitions
This review discusses instabilities of the Fermi-liquid state of conduction
electrons in metals with particular emphasis on magnetic quantum critical
points. Both the existing theoretical concepts and experimental data on
selected materials are presented; with the aim of assessing the validity of
presently available theory. After briefly recalling the fundamentals of
Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models
and their lattice versions is described. Next, the scaling concepts applicable
to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of
quantum phase transitions is described in detail. The breakdown of the latter
is analyzed in several examples. In the final part experimental data on
heavy-fermion materials and transition-metal alloys are reviewed and confronted
with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion
extended, refs added; (v3) shortened; final version as publishe
La région méditerranéenne française et ses essences forestières, signification écologique dans le contexte circum-méditerranéen
La situation géographique, bioclimatique ainsi que la zonation de la végétation en France méditerranéenne sont replacées dans un contexte circum-méditerranéen. Les exigences écologiques des essences forestières françaises sont précisées et comparées à celles des autres essences caractéristiques de l'ensemble de la région méditerranéenne
- …
