1,883 research outputs found
A discrete slug population model determined by egg production
Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it is therefore important to understand their population dynamics for the construction of efficient and effective control measures. Differential equation models of slug populations require the inclusion of large (variable) temporal delays, and strong seasonal forcing results in a non-autonomous system. This renders such models open to only a limited amount of rigorous analysis. In this paper, we derive a novel batch model based purely upon the quantity of eggs produced at different times of the year. This model is open to considerable reduction; from the resulting two variable discrete-time system it is possible to reconstruct the dynamics of the full population across the year and give conditions for extinction or global stability and persistence. Furthermore, the steady state temporal population distribution displays qualitatively different behavior with only small changes in the survival probability of slugs. The model demonstrates how small variations in the favorability of different years may result in widely different slug population fluctuations between consecutive years, and is in good agreement with field data
Photorespiration: metabolic pathways and their role in stress protection
Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/
oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the
photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic
process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus
making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration
could serve as an energy sink preventing the overreduction of the photosynthetic electron transport
chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic
CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g.
glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we
describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways.
In addition, we discuss the possible role of photorespiration under stress conditions, such as
drought, high salt concentrations and high light intensities encountered by alpine plants
TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry
We present a summary of the observation strategy of TANAMI (Tracking Active
Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring
program to study the parsec-scale structure and dynamics of relativistic jets
in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian
Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO,
and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees
declination with observations at 8.4 GHz and 22 GHz every ~2 months at
milliarcsecond resolution. The initial TANAMI sample of 43 sources has been
defined before the launch of the Fermi Gamma Ray Space Telescope to include the
most promising candidates for bright gamma-ray emission to be detected with its
Large Area Telescope (LAT). Since November 2008, we have been adding new
sources to the sample, which now includes all known radio- and gamma-ray bright
AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray
observations is crucial to understand the broadband emission characteristics of
AGN and the nature of relativistic jets.Comment: Conference proceedings "2009 Fermi Symposium" eConf Proceedings
C09112
Size of the Vela Pulsar's Emission Region at 18 cm Wavelength
We present measurements of the linear diameter of the emission region of the
Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a
function of pulse phase from the distribution of visibility on the
Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong
scintillation, finite size of the emission region produces a characteristic
W-shaped signature in the projection of the visibility distribution onto the
real axis. This modification involves heightened probability density near the
mean amplitude, decreased probability to either side, and a return to the
zero-size distribution beyond. We observe this signature with high statistical
significance, as compared with the best-fitting zero-size model, in many
regions of pulse phase. We find that the equivalent full width at half maximum
of the pulsar's emission region decreases from more than 400 km early in the
pulse to near zero at the peak of the pulse, and then increases again to
approximately 800 km near the trailing edge. We discuss possible systematic
effects, and compare our work with previous results
The TANAMI Program
TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond
Interferometry) is a monitoring program to study the parsec-scale structures
and dynamics of relativistic jets in active galactic nuclei (AGN) of the
Southern Hemisphere with the Long Baseline Array and associated telescopes.
Extragalactic jets south of -30 degrees declination are observed at 8.4 GHz and
22 GHz every two months at milliarcsecond resolution. The initial TANAMI sample
is a hybrid radio and gamma-ray selected sample since the combination of VLBI
and gamma-ray observations is crucial to understand the broadband emission
characteristics of AGN.Comment: Confernce Proceedings for "X-ray Astronomy 2009" (Bologna), 3 pages,
3 figures, needs cls-fil
NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential
The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal
Finite Temperature Time-Dependent Effective Theory for the Phase Field in two-dimensional d-wave Neutral Superconductor
We derive finite temperature time-dependent effective actions for the phase
of the pairing field, which are appropriate for a 2D electron system with both
non-retarded d- and s-wave attraction. As for s-wave pairing the d-wave
effective action contains terms with Landau damping, but their structure
appears to be different from the s-wave case due to the fact that the Landau
damping is determined by the quasiparticle group velocity v_{g}, which for
d-wave pairing does not have the same direction as the non-interacting Fermi
velocity v_{F}. We show that for d-wave pairing the Landau term has a linear
low temperature dependence and in contrast to the s-wave case are important for
all finite temperatures. A possible experimental observation of the phase
excitations is discussed.Comment: 23 pages, RevTeX4, 10 EPS figures; final version to appear in PR
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
- …
