483 research outputs found

    Theory of self-induced back-action optical trapping in nanophotonic systems

    Full text link
    Optical trapping is an indispensable tool in physics and the life sciences. However, there is a clear trade off between the size of a particle to be trapped, its spatial confinement, and the intensities required. This is due to the decrease in optical response of smaller particles and the diffraction limit that governs the spatial variation of optical fields. It is thus highly desirable to find techniques that surpass these bounds. Recently, a number of experiments using nanophotonic cavities have observed a qualitatively different trapping mechanism described as "self-induced back-action trapping" (SIBA). In these systems, the particle motion couples to the resonance frequency of the cavity, which results in a strong interplay between the intra-cavity field intensity and the forces exerted. Here, we provide a theoretical description that for the first time captures the remarkable range of consequences. In particular, we show that SIBA can be exploited to yield dynamic reshaping of trap potentials, strongly sub-wavelength trap features, and significant reduction of intensities seen by the particle, which should have important implications for future trapping technologiesComment: 7 pages, 5 figure

    Strong Optomechanical Coupling at Room Temperature by Coherent Scattering

    Full text link
    Quantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-called strong coupling regime, which in cavity optomechanics corresponds to an optomechanical coupling strength larger than cavity decay rate and mechanical damping. Here, we demonstrate the strong coupling regime at room temperature between a levitated silica particle and a high finesse optical cavity. Normal mode splitting is achieved by employing coherent scattering, instead of directly driving the cavity. The coupling strength achieved here approaches three times the cavity linewidth, crossing deep into the strong coupling regime. Entering the strong coupling regime is an essential step towards quantum control with mesoscopic objects at room temperature

    Motion control and optical interrogation of a levitating single NV in vacuum

    Full text link
    Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum in order to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultra-sensitive sensing schemes. While most efforts have so far focused on optical trapping of low absorbing silica particles, further opportunities arise from levitating objects with internal degrees of freedom like color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge, as most nano-objects, even with low absorbing materials, experience photo-damage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step towards coupling internal and external degrees of freedom.Comment: Nano Letter

    Nonlinear mode-coupling and synchronization of a vacuum-trapped nanoparticle

    Full text link
    We study the dynamics of a laser-trapped nanoparticle in high vacuum. Using parametric coupling to an external excitation source, the linewidth of the nanoparticle's oscillation can be reduced by three orders of magnitude. We show that the oscillation of the nanoparticle and the excitation source are synchronized, exhibiting a well-defined phase relationship. Furthermore, the external source can be used to controllably drive the nanoparticle into the nonlinear regime, thereby generating strong coupling between the different translational modes of the nanoparticle. Our work contributes to the understanding of the nonlinear dynamics of levitated nanoparticles in high vacuum and paves the way for studies of pattern formation, chaos, and stochastic resonance.Comment: 5 pages, 3 figure

    Long distance manipulation of a levitated nanoparticle in high vacuum

    Get PDF
    Accurate delivery of small targets in high vacuum is a pivotal task in many branches of science and technology. Beyond the different strategies developed for atoms, proteins, macroscopic clusters and pellets, the manipulation of neutral particles over macroscopic distances still poses a formidable challenge. Here we report a novel approach based on a mobile optical trap operated under feedback control that enables long range 3D manipulation of a silica nanoparticle in high vacuum. We apply this technique to load a single nanoparticle into a high-finesse optical cavity through a load-lock vacuum system. We foresee our scheme to benefit the field of optomechanics with levitating nano-objects as well as ultrasensitive detection and monitoring.Comment: 12 pages 5 figure

    Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond

    Full text link
    We present the first evidence of nitrogen vacancy (NV) photoluminescence from a nanodiamond suspended in a free-space optical dipole trap at atmospheric pressure. The photoluminescence rates are shown to decrease with increasing trap laser power, but are inconsistent with a thermal quenching process. For a continuous-wave trap, the neutral charge state (NV0^0) appears to be suppressed. Chopping the trap laser yields higher total count rates and results in a mixture of both NV0^0 and the negative charge state (NV^-).Comment: Updated to published version appearing in Optics Letter
    corecore