613 research outputs found
Stellar laboratories: new Ge V and Ge VI oscillator strengths and their validation in the hot white dwarf RE 0503-289
State-of-the-art spectral analysis of hot stars by means of non-LTE
model-atmosphere techniques has arrived at a high level of sophistication. The
analysis of high-resolution and high-S/N spectra, however, is strongly
restricted by the lack of reliable atomic data for highly ionized species from
intermediate-mass metals to trans-iron elements. Especially data for the latter
has only been sparsely calculated. Many of their lines are identified in
spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable
determination of their abundances establishes crucial constraints for AGB
nucleosynthesis simulations and, thus, for stellar evolutionary theory.
In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of
highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified.
Individual abundance determinations are hampered by the lack of reliable
oscillator strengths. Most of these identified lines stem from Ge V. In
addition, we identified Ge VI lines for the first time. We calculated Ge V and
Ge VI oscillator strengths to consider their radiative and collisional
bound-bound transitions in detail in our non-LTE stellar-atmosphere models for
the analysis of the Ge IV - VI spectrum exhibited in high-resolution and
high-S/N UV spectra of RE 0503-289. We identify four Ge IV, 37 Ge V, and seven
Ge VI lines. Most of these are identified for the first time in any star. We
reproduce almost all Ge IV, Ge VI, and Ge VI lines in the observed spectrum of
RE 0503-289 (Teff = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass
fraction, about 650 times solar).
Reliable measurements and calculations of atomic data are a prerequisite for
stellar-atmosphere modeling. Our oscillator-strength calculations have allowed,
for the first time, Ge V and Ge VI lines to be successfully reproduced in a
white dwarf's spectrum and to determine its photospheric Ge abundance.Comment: 54 pages, 8 figure
Recommended from our members
Transition Probabilities Of Astrophysical Interest In The Niobium Ions Nb+ And Nb2+
Aims. We attempt to derive accurate transition probabilities for astrophysically interesting spectral lines of Nb II and Nb III and determine the niobium abundance in the Sun and metal-poor stars rich in neutron-capture elements. Methods. We used the time-resolved laser-induced fluorescence technique to measure radiative lifetimes in Nb II. Branching fractions were measured from spectra recorded using Fourier transform spectroscopy. The radiative lifetimes and the branching fractions were combined yielding transition probabilities. In addition, we calculated lifetimes and transition probablities in Nb II and Nb III using a relativistic Hartree-Fock method that includes core polarization. Abundances of the sun and five metal-poor stars were derived using synthetic spectra calculated with the MOOG code, including hyperfine broadening of the lines. Results. We present laboratory measurements of 17 radiative lifetimes in Nb II. By combining these lifetimes with branching fractions for lines depopulating the levels, we derive the transition probabilities of 107 Nb II lines from 4d(3)5p configuration in the wavelength region 2240-4700 angstrom. For the first time, we present theoretical transition probabilities of 76 Nb III transitions with wavelengths in the range 1430-3140 angstrom. The derived solar photospheric niobium abundance log epsilon(circle dot) = 1.44 +/- 0.06 is in agreement with the meteoritic value. The stellar Nb/Eu abundance ratio determined for five metal-poor stars confirms that the r-process is a dominant production method for the n-capture elements in these stars.Integrated Initiative of Infrastructure RII3-CT-2003-506350Swedish Research CouncilKnut and Alice Wallenberg FoundationBelgian FRS-FNRSFRIAUS National Science Foundation AST-0607708, AST-0908978Astronom
Looking back to see the future: building nuclear power plants in Europe
The so-called ‘nuclear renaissance’ in Europe is promulgated by the execution of two large engineering projects involving the construction of two European Pressurized Reactors (EPRs) in Flamanville, France and Olkiluoto in Finland. As both projects have faced budget overruns and delays, this paper analyses their governance and history to derive lessons useful for the construction of future projects. Analysis indicates that the reasons for these poor outcomes are: overoptimistic estimations, first-of-a-kind (FOAK) issues and undervaluation of regulation requirements. These pitfalls have the potential to impact on many other engineering construction projects and highlight fruitful areas of further research into project performance
Nitrogen K-shell photoabsorption
Reliable atomic data have been computed for the spectral modeling of the
nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets
comprise valence and K-vacancy level energies, wavelengths, Einstein
-coefficients, radiative and Auger widths and K-edge photoionization cross
sections. An important issue is the lack of measurements which are usually
employed to fine-tune calculations so as to attain spectroscopic accuracy. In
order to estimate data quality, several atomic structure codes are used and
extensive comparisons with previous theoretical data have been carried out. In
the calculation of K photoabsorption with the Breit--Pauli -matrix method,
both radiation and Auger damping, which cause the smearing of the K edge, are
taken into account. This work is part of a wider project to compute atomic data
in the X-ray regime to be included in the database of the popular {\sc xstar}
modeling code
Erratum: "Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium, the Chandra Grating Spectra of XTE J1817-330" (2013, Apj, 768, 60)
In the published version of this paper, there are some minor inaccuracies in the absorption-line wavelengths listed in Table 4 as a result of a faulty reduction procedure of the Obs6615 spectrum. The shifts have been detected in a comparison with the wavelengths listed for this spectrum in the Chandra Transmission Grating Catalog and Archive (TGCat8). They are due to incorrect centroid positions of the zero-order image in both reductions as determined by the tgdetect utility which, when disentangled, yield the improved line positions of the amended Table 4 given below. It must also be pointed out that other quantitative findings of the original paper: 1. Table 5, p. 9: the column density (NH), ionization parameter, oxygen abundance of the warmabs model and the normalization and photon index of the power-law model; 2. Table 6, p. 9: the hydrogen column density of the warmabs fit; 3. Table 7, p. 9: the present oxygen equivalent widths of XTE J1817-330; and 4. Table 8, p. 10: the present oxygen column densities of XTE J1817-330 derived from both the curve of growth and warmabs model fit have been revised in the new light and are, within the estimated uncertainty ranges, in good accord with the new rendering
Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:
We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 10(exp 21) cm(exp 2); an ionization parameter of log xi = 2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption
Morris-Thorne wormholes with a cosmological constant
First, the ideas introduced in the wormhole research field since the work of
Morris and Thorne are briefly reviewed, namely, the issues of energy
conditions, wormhole construction, stability, time machines and astrophysical
signatures. Then, spherically symmetric and static traversable Morris-Thorne
wormholes in the presence of a generic cosmological constant are analyzed. A
matching of an interior solution to the unique exterior vacuum solution is done
using directly the Einstein equations. The structure as well as several
physical properties and characteristics of traversable wormholes due to the
effects of the cosmological term are studied. Interesting equations appear in
the process of matching. For instance, one finds that for asymptotically flat
and anti-de Sitter spacetimes the surface tangential pressure of the
thin-shell, at the boundary of the interior and exterior solutions, is always
strictly positive, whereas for de Sitter spacetime it can take either sign as
one could expect, being negative (tension) for relatively high cosmological
constant and high wormhole radius, positive for relatively high mass and small
wormhole radius, and zero in-between. Finally, some specific solutions with
generic cosmological constant, based on the Morris-Thorne solutions, are
provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published
in Physical Review
Abundances of the elements in the solar system
A review of the abundances and condensation temperatures of the elements and
their nuclides in the solar nebula and in chondritic meteorites. Abundances of
the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New
Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New
York: Springer-Verlag, p. 560-63
- …
