97,279 research outputs found
Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot
We have investigated a double-island single-electron transistor (DISET)
coupled to a floating metal double-dot (DD). Low-temperature transport
measurements were used to map out the charge configurations of both the DISET
and the DD. A suppression of the current through the DISET was observed
whenever the charge configurations of the DISET and the DD were energetically
co-degenerate. This effect was used to distinguish between degenerate and
non-degenerate charge configurations of the double-dot. We also show that this
detection scheme reduces the susceptibility of the DISET to interference from
random charge noise.Comment: 3 pages, 3 figures, to appear in Appl. Phys. Let
Nflation: observable predictions from the random matrix mass spectrum
We carry out numerical investigations of the perturbations in Nflation models
where the mass spectrum is generated by random matrix theory. The
tensor-to-scalar ratio and non-gaussianity are already known to take the
single-field values, and so the density perturbation spectral index is the main
parameter of interest. We study several types of random field initial
conditions, and compute the spectral index as a function of mass spectrum
parameters. Comparison with microwave anisotropy data from the Wilkinson
Microwave Anisotropy Probe shows that the model is currently viable in the
majority of its parameter space.Comment: 5 pages RevTeX with 4 figures. Minor corrections to match version to
appear in Physical Review
Linear perturbations in viable f(R) theories
We describe the cosmological evolution predicted by three distinct
theories, with emphasis on the evolution of linear perturbations. The most
promising observational tools for distinguishing theories from
CDM are those intrinsically related to the growth of structure, such
as weak lensing. At the linear level, the enhancement in the gravitational
potential provided by the additional `fifth force' can separate the
theories, whereas at the background level they can be indistinguishable. Under
the stringent constraints imposed on the models by Solar System tests and
galaxy-formation criteria, we show that the relative difference between the
models' linear evolution of the lensing potential will be extremely hard to
detect even with future space-based experiments such as {\it Euclid}, with a
maximum value of approximately 4% for small scales. We also show the evolution
of the gravitational potentials under more relaxed local constraint conditions,
where the relative difference between these models and CDM could prove
discriminating.Comment: 14 pages, 16 figures. Version 3 with minor changes to match version
published in Physical Review
Current Status of Defensins and Their Role in Innate and Adaptive Immunity
Naturally occurring antimicrobial cationic polypeptides play a major role in innate and adaptive immunity. These polypeptides are found to be either linear and unstructured or structured through disulfide bonds. Among the structured antimicrobial polypeptides, defensins comprise a family of cysteine-rich cationic polypeptides that contribute significantly to host defense against the invasion of microorganisms in animals, humans, insects and plants. Their wide-spread occurrence in various tissues of these diverse organisms, and their importance in innate and adaptive immunity have led to their identification, isolation and characterization. A large volume of literature is available on defensins’ occurrence, structural characterization, gene expression and regulation under normal and pathological conditions. Much has also been published regarding their antimicrobial, antiviral and chemoattractive properties, and their molecular and cellular interactions. In this review, we describe the current status of our knowledge of defensins with respect to their molecular, cellular and structural biology, their role in host defense, future research paradigms and the possibility of their utilization as a new class of non-toxic antimicrobial agents and immuno-modulators
Viable inflationary models ending with a first-order phase transition
We investigate the parameter space of hybrid inflation models where inflation
terminates via a first-order phase transition causing nucleation of bubbles.
Such models experience a tension from the need to ensure nearly scale invariant
density perturbations, while avoiding a near scale-invariant bubble size
distribution which would conflict observations. We perform an exact analysis of
the different regimes of the models, where the energy density of the inflaton
field ranges from being negligible as compared to the vacuum energy to
providing most of the energy for inflation. Despite recent microwave anisotropy
results favouring a spectral index less than one, we find that there are still
viable models that end with bubble production and can match all available
observations. As a by-product of our analysis, we also provide an up-to-date
assessment of the viable parameter space of Linde's original second-order
hybrid model across its full parameter range.Comment: 9 pages, 7 figures. Revised version: corrections to description of
the historical development of the models. v3: Minor corrections to match
version accepted by PR
Dual pathway spindle assembly increases both the speed and the fidelity of mitosis
Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis
Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths
We report the first computational super-resolved, multi-camera integral
imaging at long-wave infrared (LWIR) wavelengths. A synchronized array of FLIR
Lepton cameras was assembled, and computational super-resolution and
integral-imaging reconstruction employed to generate video with light-field
imaging capabilities, such as 3D imaging and recognition of partially obscured
objects, while also providing a four-fold increase in effective pixel count.
This approach to high-resolution imaging enables a fundamental reduction in the
track length and volume of an imaging system, while also enabling use of
low-cost lens materials.Comment: Supplementary multimedia material in
http://dx.doi.org/10.6084/m9.figshare.530302
Epidemiology of parainfluenza virus type 3 in England and Wales over a ten-year period
We have analysed data on respiratory syneytial (RS) and parainfiuenza type 3 (PF3) viruses reported to the Communicable Disease Surveillance Centre. London, over the period 1978–87. These confirm the annual winter epidemic of RS virus and show that, in England and Wales, PF3 is a summer infection with regular yearly epidemics
- …
