72,378 research outputs found
An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles
A fast, efficient and user friendly inverse design system for 3-D nacelles was developed. The system is a product of a 2-D inverse design method originally developed at NASA-Langley and the CFL3D analysis code which was also developed at NASA-Langley and modified for nacelle analysis. The design system uses a predictor/corrector design approach in which an analysis code is used to calculate the flow field for an initial geometry, the geometry is then modified based on the difference between the calculated and target pressures. A detailed discussion of the design method, the process of linking it to the modified CFL3D solver and its extension to 3-D is presented. This is followed by a number of examples of the use of the design system for the design of both axisymmetric and 3-D nacelles
The origin of the positron excess in cosmic rays
We show that the positron excess measured by the PAMELA experiment in the
region between 10 and 100 GeV may well be a natural consequence of the standard
scenario for the origin of Galactic cosmic rays. The 'excess' arises because of
positrons created as secondary products of hadronic interactions inside the
sources, but the crucial physical ingredient which leads to a natural
explanation of the positron flux is the fact that the secondary production
takes place in the same region where cosmic rays are being accelerated.
Therefore secondary positrons (and electrons) participate in the acceleration
process and turn out to have a very flat spectrum, which is responsible, after
propagation in the Galaxy, for the observed positron 'excess'. This effect
cannot be avoided though its strength depends on the values of the
environmental parameters during the late stages of evolution of supernova
remnants.Comment: 4 Pages, 2 figures. Some references and discussion adde
Calibration of the CH and CN Variations Among Main Sequence Stars in M71 and in M13
An analysis of the CN and CH band strengths measured in a large sample of M71
and M13 main sequence stars by Cohen (1999a,b) is undertaken using synthetic
spectra to quantify the underlying C and N abundances. In the case of M71 it is
found that the observed CN and CH band strengths are best matched by the
{\it{identical}} C/N/O abundances which fit the bright giants, implying: 1)
little if any mixing is taking place during red giant branch ascent in M71, and
2) a substantial component of the C and N abundance inhomogeneities is in place
before the main sequence turn-off. The unlikelihood of mixing while on the main
sequence requires an explanation for the abundance variations which lies
outside the present stars (primordial inhomogeneities or intra-cluster self
enrichment). For M13 it is shown that the 3883\AA CN bands are too weak to be
measured in the spectra for any reasonable set of expected compositions. A
similar situation exists for CH as well. However, two of the more luminous
program stars do appear to have C abundances considerably greater than those
found among the bright giants thereby suggesting deep mixing has taken place on
the M13 red giant branch.Comment: 14 pages, 4 figures, accepted for publication by A
Recommended from our members
Beyond product markets: new insight on liability of foreignness from capital markets
We expand the Liability of Foreignness (LOF) construct beyond the product market domain to
include liabilities faced by firms attempting to secure resources in host capital markets. Drawing
from institutional theory and research in finance, we identify institutional distance, information
asymmetry, unfamiliarity, and cultural differences as the main sources of capital market LOF
(CMLOF). We then propose that the impact of these antecedent factors can be moderated
through bonding, signaling, organizational isomorphism, and reputational endorsements
Absence of Electron Surfing Acceleration in a Two-Dimensional Simulation
Electron acceleration in high Mach number perpendicular shocks is
investigated through two-dimensional electrostatic particle-in-cell (PIC)
simulation. We simulate the shock foot region by modeling particles that
consist of three components such as incident protons and electrons and
reflected protons in the initial state which satisfies the Buneman instability
condition. In contrast to previous one-dimensional simulations in which strong
surfing acceleration is realized, we find that surfing acceleration does not
occur in two-dimensional simulation. This is because excited electrostatic
potentials have a two-dimensional structure that makes electron trapping
impossible. Thus, the surfing acceleration does not work either in itself or as
an injection mechanism for the diffusive shock acceleration. We briefly discuss
implications of the present results on the electron heating and acceleration by
shocks in supernova remnants.Comment: 12 pages, 4 figures, accepted for publication in ApJ
Causal Quantum Theory and the Collapse Locality Loophole
Causal quantum theory is an umbrella term for ordinary quantum theory
modified by two hypotheses: state vector reduction is a well-defined process,
and strict local causality applies. The first of these holds in some versions
of Copenhagen quantum theory and need not necessarily imply practically
testable deviations from ordinary quantum theory. The second implies that
measurement events which are spacelike separated have no non-local
correlations. To test this prediction, which sharply differs from standard
quantum theory, requires a precise theory of state vector reduction.
Formally speaking, any precise version of causal quantum theory defines a
local hidden variable theory. However, causal quantum theory is most naturally
seen as a variant of standard quantum theory. For that reason it seems a more
serious rival to standard quantum theory than local hidden variable models
relying on the locality or detector efficiency loopholes.
Some plausible versions of causal quantum theory are not refuted by any Bell
experiments to date, nor is it obvious that they are inconsistent with other
experiments. They evade refutation via a neglected loophole in Bell experiments
-- the {\it collapse locality loophole} -- which exists because of the possible
time lag between a particle entering a measuring device and a collapse taking
place. Fairly definitive tests of causal versus standard quantum theory could
be made by observing entangled particles separated by light
seconds.Comment: Discussion expanded; typos corrected; references adde
Cultivation and use of bryophytes as experimental material
Bryophytes can be grown successfully if keptmoist, supplied
with nutrients, and out of direct sunlight. They remain greener
on peat than on sand. However, difficulties were encountered when
attempting to grow mosses and liverworts in an unshaded
glasshouse, in spring and summer. Even spraying hourly with water
did not prevent scorching and desiccation.
Growth can be measured using a variety of techniques; height
measurement and shoot elongation from thread markers proved the
most reliabl
- …
