127,406 research outputs found
Integrity bases for local invariants of composite quantum systems
Unitary group branchings appropriate to the calculation of local invariants
of density matrices of composite quantum systems are formulated using the
method of -function plethysms. From this, the generating function for the
number of invariants at each degree in the density matrix can be computed. For
the case of two two-level systems the generating function is . Factorisation of such series leads
in principle to the identification of an integrity basis of algebraically
independent invariants. This note replaces Appendix B of our paper\cite{us} J
Phys {\bf A33} (2000) 1895-1914 (\texttt{quant-ph/0001076}) which is incorrect.Comment: Latex, 4 pages, correcting Appendix B of quant-ph/0001076 Error in
corrected and conclusions modified accordingl
Multibody Interplanetary Swingby Trajectories /MIST-1/
Computer program incorporates new isolation procedure to determine interplanetary trajectories which utilize a maximum of three flybys. Program also computes singe planet flybys and direct transfer trajectories. The three principle systems employed in MIST-1 use as their fundamental plane the mean plane of the earth's orbit around the sun
Umbilical disconnect actuator
Contamination of sensitive equipment when squibs are fired is prevented by O-rings which retain the debris of squib discharge within the disconnect device
Daze fasteners
A daze fastener system for connecting two or more structural elements wherein the structural elements and fastener parts have substantially different coefficient of thermal expansion physical property characteristics is employed in this invention. By providing frusto-conical abutting surfaces between the structural elements and fastener parts any differences in thermal expansion/contraction between the parts is translated to sliding motion and avoids deleterious thermal stresses in the connection. An essential feature for isotropic homogeneous material connections is that at least two sets of mating surfaces are required wherein each set of mating surfaces have line element extensions that pass through a common point
Input description for Jameson's three-dimensional transonic airfoil analysis program
The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane
Evolution of the 2D surface structure of a silicon pitch grating under argon ion bombardement: experiment and modeling
Stress concentrations around voids in three dimensions : The roots of failure
Funding This work forms part of a NERC New Investigator award for DH (NE/I001743/1), which is gratefully acknowledged. Acknowledgments The authors would like to acknowledge the reviewers, Elizabeth Ritz and Phillip Resor. Their reviews were very constructive, both helping to improve the manuscripts consistency and highlighting a number of errors in the initial submission. The authors would also like to thank Lydia Jagger's keen eye and patience, she helped greatly in removing a number of grammatical errors from the initial draft.Peer reviewedPublisher PD
Global synchronization algorithms for the Intel iPSC/860
In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms
Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented
Isolating quantum coherence with pathway-selective coherent multi-dimensional spectroscopy
Coherent coupling between spatially separated systems has long been explored
as a necessary requirement for quantum information and cryptography. Recent
discoveries suggest such phenomena appear in a much wider range of processes,
including light-harvesting in photosynthesis. These discoveries have been
facilitated by developments in coherent multi-dimensional spectroscopy (CMDS)
that allow interactions between different electronic states to be identified in
crowded spectra. For complex systems, however, spectral broadening and multiple
overlapping peaks limit the ability to separate, identify and properly analyse
all contributions. Here we demonstrate how pathway-selective CMDS can overcome
these limitations to reveal, isolate and allow detailed analysis of weak
coherent coupling between spatially separated excitons localised to different
semiconductor quantum wells. Selective excitation of the coherence pathways, by
spectrally shaping the laser pulses, provides access to previously hidden
details and enables quantitative analysis that can facilitate precise and
detailed understanding of interactions in this and other complex systems
- …
