261 research outputs found

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

    Get PDF
    Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes.1–7. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a novel transcriptional activation–based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator–like (TAL) effector proteins8, 9. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effector proteins can potentially tolerate 1–3 and 1–2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity

    Definition of the Gene Content of the Human Genome: The Need for Deep Experimental Verification

    Get PDF
    Based on the analysis of the drafts of the human genome sequence, it is being speculated that our species may possess an unexpectedly low number of genes. The quality of the drafts, the impossibility of accurate gene prediction and the lack of sufficient transcript sequence data, however, render such speculations very premature. The complexity of human gene structure requires additional and extensive experimental verification of transcripts that may result in major revisions of these early estimates of the number of human genes

    Use of tobacco and alcohol by Swiss primary care physicians: a cross-sectional survey

    Get PDF
    BACKGROUND: Health behaviours among doctors has been suggested to be an important marker of how harmful lifestyle behaviours are perceived. In several countries, decrease in smoking among physicians was spectacular, indicating that the hazard was well known. Historical data have shown that because of their higher socio-economical status physicians take up smoking earlier. When the dangers of smoking become better known, physicians began to give up smoking at a higher rate than the general population. For alcohol consumption, the situation is quite different: prevalence is still very high among physicians and the dangers are not so well perceived. To study the situation in Switzerland, data of a national survey were analysed to determine the prevalence of smoking and alcohol drinking among primary care physicians. METHODS: 2'756 randomly selected practitioners were surveyed to assess subjective mental and physical health and their determinants, including smoking and drinking behaviours. Physicians were categorised as never smokers, current smokers and former smokers, as well as non drinkers, drinkers (AUDIT-C < 4 for women and < 5 for men) and at risk drinkers (higher scores). RESULTS: 1'784 physicians (65%) responded (men 84%, mean age 51 years). Twelve percent were current smokers and 22% former smokers. Sixty six percent were drinkers and 30% at risk drinkers. Only 4% were never smokers and non drinkers. Forty eight percent of current smokers were also at risk drinkers and 16% of at risk drinkers were also current smokers. Smoking and at risk drinking were more frequent among men, middle aged physicians and physicians living alone. When compared to a random sample of the Swiss population, primary care physicians were two to three times less likely to be active smokers (12% vs. 30%), but were more likely to be drinkers (96% vs. 78%), and twice more likely to be at risk drinkers (30% vs. 15%). CONCLUSION: The prevalence of current smokers among Swiss primary care physicians was much lower than in the general population in Switzerland, reflecting that the hazards of smoking are well known to doctors. However, the opposite was found for alcohol use, underlining the importance of making efforts in this area to increase awareness among physicians of the dangers of alcohol consumption

    Learning to control a BMI-driven wheelchair for people with severe tetraplegia

    Get PDF
    Mind-controlled wheelchairs are an intriguing assistive mobility solution applicable in complete paralysis. Despite technical progress in brain-machine interface (BMI) technology, its translation remains elusive. The primary objective of this study is to probe the hypothesis that BMI skill acquisition by end-users is fundamental to control a non-invasive brain-actuated intelligent wheelchair in real-world settings. Here, we show that three tetraplegic spinal cord injury users could be trained to operate a non-invasive, self-paced thought-controlled wheelchair and execute complex navigation tasks. However, only the two users exhibiting increasing decoding performance and feature discriminancy, as well as significant neuroplasticity changes and improved BMI command latency, achieved high navigation performance. Additionally, we show that dexterous, continuous control of robots is possible through low-degree of freedom, discrete and uncertain control channels like a motor imagery BMI, by blending human and artificial intelligence through shared-control methodologies. We posit that subject learning and shared-control are the key-components paving the way for translational non-invasive BMI

    Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: A randomised, double-blind, multicentre, placebo-controlled, phase 2b trial

    Get PDF
    Background: Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury.Methods: This randomised, double-blind, placebo-controlled phase 2b clinical trial was done at 13 hospitals in the Czech Republic, Germany, Spain, and Switzerland. Patients aged 18-70 years with acute, complete or incomplete cervical spinal cord injury (neurological level of injury C1-C8) within 4-28 days of injury were eligible for inclusion. Participants were initially randomly assigned 1:1 to intrathecal treatment with 45 mg NG101 or placebo (phosphate-buffered saline); 18 months into the study, the ratio was adjusted to 3:1 to achieve a final distribution of 2:1 to improve enrolment and drug exposure. Randomisation was done using a centralised, computer-based randomisation system and was stratified according to nine distinct outcome categories with a validated upper extremity motor score (UEMS) prediction model based on clinical parameters at screening. Six intrathecal injections were administered every 5 days over 4 weeks, starting within 28 days of injury. Investigators, study personnel, and study participants were masked to treatment allocation. The primary outcome was change in UEMS at 6 months, analysed alongside safety in the full analysis set. The completed trial was registered at ClinicalTrials.gov, NCT03935321.Findings: From May 20, 2019, to July 20, 2022, 463 patients with acute traumatic cervical spinal cord injury were screened, 334 were deemed ineligible and excluded, and 129 were randomly assigned to an intervention (80 patients in the NG101 group and 49 in the placebo group). The full analysis set comprised 78 patients from the NG101 group and 48 patients from the placebo group. 107 (85%) patients were male and 19 (15%) patients were female, with a median age of 51·5 years (IQR 30·0-60·0). Across all patients, the primary endpoint showed no significant difference between groups (with UEMS change at 6 months 1·37 [95% CI -1·44 to 4·18]; placebo group mean 19·20 [SD 11·78] at baseline and 30·91 [SD 15·49] at day 168; NG101 group mean 18·23 [SD 15·14] at baseline and 31·31 [19·54] at day 168). Treatment-related adverse events were similar between groups (nine in the NG101 group and six in the placebo group). 25 severe adverse events were reported: 18 in 11 (14%) patients in the NG101 group and seven in six (13%) patients in the placebo group. Although no treatment-related fatalities were reported in the NG101 group, one fatality not related to treatment occurred in the placebo group. Infections were the most common adverse event affecting 44 (92%) patients in the placebo group and 65 (83%) patients in the NG101 group.Interpretation: NG101 did not improve UEMS in patients with acute spinal cord injury. Post-hoc subgroup analyses assessing UEMS and Spinal Cord Independence Measure of self-care in patients with motor-incomplete injury indicated potential beneficial effects that require investigation in future studies

    How and Why to Replace the 14-Day Rule

    Get PDF
    Purpose of ReviewThe ‘14-day rule’, which limits research on human embryos to the first 14 days after fertilisation, has long been a pillar of regulation in this contested area. Recently, advances in developmental biology have led to calls to rethink the rule and its application. In this paper, I address the question of whether the 14-day rule should be replaced and, if so, how.Recent FindingsThe two lines of research that have prompted this question are new techniques enabling culture of embryos at least up to 14 days and patterning experiments with pluripotent cells suggesting that they might form embryo-like structures. I consider each of these in relation to the foundations and function of the rule to examine whether they warrant change.SummaryI argue that the 14-day rule for embryo research should be open to change, but that this possibility must be addressed through early and thorough discussion involving a wide range of publics and other stakeholder

    Highly multiplexed subcellular RNA sequencing in situ

    Get PDF
    Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ
    corecore