1,724 research outputs found

    First upper limit analysis and results from LIGO science data: stochastic background

    Full text link
    I describe analysis of correlations in the outputs of the three LIGO interferometers from LIGO's first science run, held over 17 days in August and September of 2002, and the resulting upper limit set on a stochastic background of gravitational waves. By searching for cross-correlations between the LIGO detectors in Livingston, LA and Hanford, WA, we are able to set a 90% confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting on Gravitational Wave

    Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models

    Get PDF
    Relativistic heavy ion collisions are studied assuming that particles can be described by a hadron gas in thermal and chemical equilibrium. The exact conservation of baryon number, strangeness and charge are explicitly taken into account. For heavy ions the effect arising from the neutron surplus becomes important and leads to a substantial increase in e.g. the π/π+\pi^-/\pi^+ ratio. A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure

    Erythrocyte enrichment in hematopoietic progenitor cell cultures based on magnetic susceptibility of the hemoglobin

    Get PDF
    Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. © 2012 Jin et al

    The Primordial Gravitational Wave Background in String Cosmology

    Get PDF
    We find the spectrum P(w)dw of the gravitational wave background produced in the early universe in string theory. We work in the framework of String Driven Cosmology, whose scale factors are computed with the low-energy effective string equations as well as selfconsistent solutions of General Relativity with a gas of strings as source. The scale factor evolution is described by an early string driven inflationary stage with an instantaneous transition to a radiation dominated stage and successive matter dominated stage. This is an expanding string cosmology always running on positive proper cosmic time. A careful treatment of the scale factor evolution and involved transitions is made. A full prediction on the power spectrum of gravitational waves without any free-parameters is given. We study and show explicitly the effect of the dilaton field, characteristic to this kind of cosmologies. We compute the spectrum for the same evolution description with three differents approachs. Some features of gravitational wave spectra, as peaks and asymptotic behaviours, are found direct consequences of the dilaton involved and not only of the scale factor evolution. A comparative analysis of different treatments, solutions and compatibility with observational bounds or detection perspectives is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra

    On the relation between effective supersymmetric actions in different dimensions

    Get PDF
    We make two remarks: (i) Renormalization of the effective charge in a 4--dimensional (supersymmetric) gauge theory is determined by the same graphs and is rigidly connected to the renormalization of the metric on the moduli space of the classical vacua of the corresponding reduced quantum mechanical system. Supersymmetry provides constraints for possible modifications of the metric, and this gives us a simple proof of nonrenormalization theorems for the original 4-dimensional theory. (ii) We establish a nontrivial relationship between the effective (0+1)-dimensional and (1+1)-dimensional Lagrangia (the latter represent conventional Kahlerian sigma models).Comment: 15 pages, 2 figure

    Effective action and semiclassical limit of spin foam models

    Full text link
    We define an effective action for spin foam models of quantum gravity by adapting the background field method from quantum field theory. We show that the Regge action is the leading term in the semi-classical expansion of the spin foam effective action if the vertex amplitude has the large-spin asymptotics which is proportional to an exponential function of the vertex Regge action. In the case of the known three-dimensional and four-dimensional spin foam models this amounts to modifying the vertex amplitude such that the exponential asymptotics is obtained. In particular, we show that the ELPR/FK model vertex amplitude can be modified such that the new model is finite and has the Einstein-Hilbert action as its classical limit. We also calculate the first-order and some of the second-order quantum corrections in the semi-classical expansion of the effective action.Comment: Improved presentation, 2 references added. 15 pages, no figure

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure

    Matrix models as solvable glass models

    Full text link
    We present a family of solvable models of interacting particles in high dimensionalities without quenched disorder. We show that the models have a glassy regime with aging effects. The interaction is controlled by a parameter pp. For p=2p=2 we obtain matrix models and for p>2p>2 `tensor' models. We concentrate on the cases p=2p=2 which we study analytically and numerically.Comment: 10 pages + 2 figures, Univ.Roma I, 1038/94, ROM2F/94/2

    Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres

    Full text link
    Exoplanets with lower equilibrium temperatures than Earth and primordial hydrogen atmospheres that evaporate after formation should pass through transient periods where oceans can form on their surfaces, as liquid water can form below a few thousand bar pressure and H2-H2 collision-induced absorption provides significant greenhouse warming. The duration of the transient period depends on the planet size, starting H2 inventory and star type, with the longest periods typically occurring for planets around M-class stars. As pre-biotic compounds readily form in the reducing chemistry of hydrogen-rich atmospheres, conditions on these planets could be favourable to the emergence of life. The ultimate fate of any emergent organisms under such conditions would depend on their ability to adapt to (or modify) their gradually cooling environment.Comment: 19 pages, 5 figures, accepted for publication in Icaru
    corecore