1,125 research outputs found

    Parametric Representation for the Multisoliton Solution of the Camassa-Holm Equation

    Full text link
    The parametric representation is given to the multisoliton solution of the Camassa-Holm equation. It has a simple structure expressed in terms of determinants. The proof of the solution is carried out by an elementary theory of determinanats. The large time asymptotic of the solution is derived with the fomula for the phase shift. The latter reveals a new feature when compared with the one for the typical soliton solutions. The peakon limit of the phase shift ia also considered, showing that it reproduces the known result.Comment: 14 page

    A note on the integrable discretization of the nonlinear Schr\"odinger equation

    Full text link
    We revisit integrable discretizations for the nonlinear Schr\"odinger equation due to Ablowitz and Ladik. We demonstrate how their main drawback, the non-locality, can be overcome. Namely, we factorize the non-local difference scheme into the product of local ones. This must improve the performance of the scheme in the numerical computations dramatically. Using the equivalence of the Ablowitz--Ladik and the relativistic Toda hierarchies, we find the interpolating Hamiltonians for the local schemes and show how to solve them in terms of matrix factorizations.Comment: 24 pages, LaTeX, revised and extended versio

    On integrability of the differential constraints arising from the singularity analysis

    Full text link
    Integrability of the differential constraints arising from the singularity analysis of two (1+1)-dimensional second-order evolution equations is studied. Two nonlinear ordinary differential equations are obtained in this way, which are integrable by quadratures in spite of very complicated branching of their solutions.Comment: arxiv version is already offcia

    Spectral decomposition for the Dirac system associated to the DSII equation

    Full text link
    A new (scalar) spectral decomposition is found for the Dirac system in two dimensions associated to the focusing Davey--Stewartson II (DSII) equation. Discrete spectrum in the spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum. We show that these embedded eigenvalues are structurally unstable under small variations of the initial data. This instability leads to the decay of localized initial data into continuous wave packets prescribed by the nonlinear dynamics of the DSII equation

    Analytical three-dimensional bright solitons and soliton-pairs in Bose-Einstein condensates with time-space modulation

    Full text link
    We provide analytical three-dimensional bright multi-soliton solutions to the (3+1)-dimensional Gross-Pitaevskii (GP) equation with time and space-dependent potential, time-dependent nonlinearity, and gain/loss. The zigzag propagation trace and the breathing behavior of solitons are observed. Different shapes of bright solitons and fascinating interactions between two solitons can be achieved with different parameters. The obtained results may raise the possibility of relative experiments and potential applications.Comment: 5 pages, 4 figure

    Two-component Analogue of Two-dimensional Long Wave-Short Wave Resonance Interaction Equations: A Derivation and Solutions

    Full text link
    The two-component analogue of two-dimensional long wave-short wave resonance interaction equations is derived in a physical setting. Wronskian solutions of the integrable two-component analogue of two-dimensional long wave-short wave resonance interaction equations are presented.Comment: 16 pages, 9 figures, revised version; The pdf file including all figures: http://www.math.utpa.edu/kmaruno/yajima.pd

    Exact solutions to the focusing nonlinear Schrodinger equation

    Full text link
    A method is given to construct globally analytic (in space and time) exact solutions to the focusing cubic nonlinear Schrodinger equation on the line. An explicit formula and its equivalents are presented to express such exact solutions in a compact form in terms of matrix exponentials. Such exact solutions can alternatively be written explicitly as algebraic combinations of exponential, trigonometric, and polynomial functions of the spatial and temporal coordinates.Comment: 60 pages, 18 figure

    Integrable semi-discretization of the coupled nonlinear Schr\"{o}dinger equations

    Full text link
    A system of semi-discrete coupled nonlinear Schr\"{o}dinger equations is studied. To show the complete integrability of the model with multiple components, we extend the discrete version of the inverse scattering method for the single-component discrete nonlinear Schr\"{o}dinger equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem of the model is solved. Further, the integrals of motion and the soliton solutions are constructed within the framework of the extension of the inverse scattering method.Comment: 27 pages, LaTeX2e (IOP style

    Darboux transformation and multi-soliton solutions of Two-Boson hierarchy

    Full text link
    We study Darboux transformations for the two boson (TB) hierarchy both in the scalar as well as in the matrix descriptions of the linear equation. While Darboux transformations have been extensively studied for integrable models based on SL(2,R)SL(2,R) within the AKNS framework, this model is based on SL(2,R)U(1)SL(2,R)\otimes U(1). The connection between the scalar and the matrix descriptions in this case implies that the generic Darboux matrix for the TB hierarchy has a different structure from that in the models based on SL(2,R)SL(2,R) studied thus far. The conventional Darboux transformation is shown to be quite restricted in this model. We construct a modified Darboux transformation which has a much richer structure and which also allows for multi-soliton solutions to be written in terms of Wronskians. Using the modified Darboux transformations, we explicitly construct one soliton/kink solutions for the model.Comment:

    An integrable semi-discretization of the Camassa-Holm equation and its determinant solution

    Full text link
    An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of NN-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-soliton-cuspon solutions. Numerical computations using the integrable semi-discrete Camassa-Holm equation are performed. It is shown that the integrable semi-discrete Camassa-Holm equation gives very accurate numerical results even in the cases of cuspon-cuspon and soliton-cuspon interactions. The numerical computation for an initial value condition, which is not an exact solution, is also presented
    corecore