746 research outputs found
Voluntary sodium intake during effort in hot environments
The factors that influence the amount of salt that a person adds to his food at mealtime, and the part played by the general requirement for salt in the daily diet stemming from the coluntary input of salt are studied. Careful measurements of salt intake and outflow were performed on ten marchers in a high temperature environment who were given individual salt shakers that were weighed before and after each meal. Some marchers were told to add salt to their meals on specific days. No parallelity was found between the voluntary sodium intake and the general sodium intake, the excretion of sodium in the urine or the environmental heat stress. Individual food habit was found to be the most important factor
When resources collide: Towards a theory of coincidence in information spaces
This paper is an attempt to lay out foundations for a general theory of coincidence in information spaces such as the World Wide Web, expanding on existing work on bursty structures in document streams and information cascades. We elaborate on the hypothesis that every resource that is published in an information space, enters a temporary interaction with another resource once a unique explicit or implicit reference between the two is found. This thought is motivated by Erwin Shroedingers notion of entanglement between quantum systems. We present a generic information cascade model that exploits only the temporal order of information sharing activities, combined with inherent properties of the shared information resources. The approach was applied to data from the world's largest online citizen science platform Zooniverse and we report about findings of this case study
Reduction of voluntary dehydration during effort in hot environments
During an experimental marching trip the daily positive fluid balance was preserved by providing a wide choice of beverages during the hours of the day. It was found that the beverage most suitable for drinking in large quantities during periods of effort was a cold drink with sweetened (citrus) fruit taste. Carbonated drinks, including beer, but milk also, were found unsuitable for this purpose
Fluctuations of company yearly profits versus scaled revenue: Fat tail distribution of Levy type
We analyze annual revenues and earnings data for the 500 largest-revenue U.S.
companies during the period 1954-2007. We find that mean year profits are
proportional to mean year revenues, exception made for few anomalous years,
from which we postulate a linear relation between company expected mean profit
and revenue. Mean annual revenues are used to scale both company profits and
revenues. Annual profit fluctuations are obtained as difference between actual
annual profit and its expected mean value, scaled by a power of the revenue to
get a stationary behavior as a function of revenue. We find that profit
fluctuations are broadly distributed having approximate power-law tails with a
Levy-type exponent , from which we derive the associated
break-even probability distribution. The predictions are compared with
empirical data.Comment: 6 pages, 6 figure
Recommended from our members
Ambient and Microenvironmental Particles and Exhaled Nitric Oxide Before and After a Group Bus Trip
Objectives: Airborne particles have been linked to pulmonary oxidative stress and inflammation. Because these effects may be particularly great for traffic-related particles, we examined associations between particle exposures and exhaled nitric oxide (FENO) in a study of 44 senior citizens, which involved repeated trips aboard a diesel bus. Methods: Samples of FENO collected before and after the trips were regressed against microenvironmental and ambient particle concentrations using mixed models controlling for subject, day, trip, vitamins, collection device, mold, pollen, room air nitric oxide, apparent temperature, and time to analysis. Although ambient concentrations were collected at a fixed location, continuous group-level personal samples characterized microenvironmental exposures throughout facility and trip periods. Results: In pre-trip samples, both microenvironmental and ambient exposures to fine particles were positively associated with FENO. For example, an interquartile increase of 4 μg/m3 in the daily microenvironmental PM2.5 concentration was associated with a 13% [95% confidence interval (CI), 2–24%) increase in FENO. After the trips, however, FENO concentrations were associated pre-dominantly with microenvironmental exposures, with significant associations for concentrations measured throughout the whole day. Associations with exposures during the trip also were strong and statistically significant with a 24% (95% CI, 15–34%) increase in FENO predicted per interquartile increase of 9 μg/m3 in PM2.5. Although pre-trip findings were generally robust, our post-trip findings were sensitive to several influential days. Conclusions: Fine particle exposures resulted in increased levels of FENO in elderly adults, suggestive of increased airway inflammation. These associations were best assessed by microenvironmental exposure measurements during periods of high personal particle exposures
On Colorful Bin Packing Games
We consider colorful bin packing games in which selfish players control a set
of items which are to be packed into a minimum number of unit capacity bins.
Each item has one of colors and cannot be packed next to an item of
the same color. All bins have the same unitary cost which is shared among the
items it contains, so that players are interested in selecting a bin of minimum
shared cost. We adopt two standard cost sharing functions: the egalitarian cost
function which equally shares the cost of a bin among the items it contains,
and the proportional cost function which shares the cost of a bin among the
items it contains proportionally to their sizes. Although, under both cost
functions, colorful bin packing games do not converge in general to a (pure)
Nash equilibrium, we show that Nash equilibria are guaranteed to exist and we
design an algorithm for computing a Nash equilibrium whose running time is
polynomial under the egalitarian cost function and pseudo-polynomial for a
constant number of colors under the proportional one. We also provide a
complete characterization of the efficiency of Nash equilibria under both cost
functions for general games, by showing that the prices of anarchy and
stability are unbounded when while they are equal to 3 for black and
white games, where . We finally focus on games with uniform sizes (i.e.,
all items have the same size) for which the two cost functions coincide. We
show again a tight characterization of the efficiency of Nash equilibria and
design an algorithm which returns Nash equilibria with best achievable
performance
Epidemic processes in complex networks
In recent years the research community has accumulated overwhelming evidence
for the emergence of complex and heterogeneous connectivity patterns in a wide
range of biological and sociotechnical systems. The complex properties of
real-world networks have a profound impact on the behavior of equilibrium and
nonequilibrium phenomena occurring in various systems, and the study of
epidemic spreading is central to our understanding of the unfolding of
dynamical processes in complex networks. The theoretical analysis of epidemic
spreading in heterogeneous networks requires the development of novel
analytical frameworks, and it has produced results of conceptual and practical
relevance. A coherent and comprehensive review of the vast research activity
concerning epidemic processes is presented, detailing the successful
theoretical approaches as well as making their limits and assumptions clear.
Physicists, mathematicians, epidemiologists, computer, and social scientists
share a common interest in studying epidemic spreading and rely on similar
models for the description of the diffusion of pathogens, knowledge, and
innovation. For this reason, while focusing on the main results and the
paradigmatic models in infectious disease modeling, the major results
concerning generalized social contagion processes are also presented. Finally,
the research activity at the forefront in the study of epidemic spreading in
coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
Air pollution and the microvasculature: A cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA)
10.1371/journal.pmed.1000372PLoS Medicine711
- …
