2,086 research outputs found
Independent Orbiter Assessment (IOA): Assessment of instrumental subsystem FMEA/CIL
The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Instrumentation hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter Instrumentation hardware are documented. The IOA product for Instrumentation analysis consisted of 107 failure mode worksheets that resulted in 22 critical items being identified. Comparison was made to the Pre 51-L NASA baseline with 14 Post 51-L FMEAs added, which consists of 96 FMEAs and 18 CIL items. This comparison produced agreement on all but 25 FMEAs which caused differences in 5 CIL items
Ambient Multi-Camera Personal Documentary
Polymnia is an automated solution for the creation of ambient multi-camera personal documentary films. This short paper introduces the system, emphasising the rule-based documentary generation engine that we have created to assemble an edited narrative from source footage. We describe how such automatically generated media can be integrated with and augment personally-authored images and videos as a contribution to an individual’s personal digital memory
Recommended from our members
Memory for Emotional Simulations: Remembering a Rosy Future
Mental simulations of future experiences are often concerned with emotionally arousing events. Although it is widely believed that mental simulations enhance future behavior, virtually nothing is known about the mnemonic fate of these simulations over time or whether emotional simulations are especially well-remembered. We used a novel paradigm, combining recently developed methods for generating future event simulations and well-established memory testing procedures, to examine the retention of positive, negative, and neutral simulations over multiple delays. We found that with increasing delay, details associated with negative simulations become more difficult to remember than details associated with positive and neutral simulations. We suggest that these delay-by-emotion interactions reflect the mnemonic influence of fading affect bias, where negative reactions fade more quickly than positive ones, resulting in a tendency to remember a rosy simulated future. We also discuss implications for affective disorders such as depression and anxiety.Psycholog
A Feature-Augmented Grammar for Automated Media Production
The IST Polymnia project is creating a fully automated system for personalised video generation, including content creation, selection and composition. This paper presents a linguistically motivated solution using context-free feature-augmented grammar rules to describe editing tasks and hence automate video editing. The solution is media and application independent
Evolving process-based models from psychological datausing genetic programming
The development of computational models to provide explanations of psychological data can be achieved using semi-automated search techniques, such as genetic programming. One challenge with these techniques is to control the type of model that is evolved to be cognitively plausible – a typical problem is that of “bloating”, where continued evolution generates models of increasing size without improving overall fitness. In this paper we describe a system for representing psychological data, a class of process-based models, and algorithms for evolving models. We apply this system to the delayed match-to-sample task. We show how the challenge of bloating may be addressed by extending the fitness function to include measures of cognitive performance
Neural Substrates of Semantic Prospection – Evidence from the Dementias
The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts
A Taxonomy of Workflow Management Systems for Grid Computing
With the advent of Grid and application technologies, scientists and
engineers are building more and more complex applications to manage and process
large data sets, and execute scientific experiments on distributed resources.
Such application scenarios require means for composing and executing complex
workflows. Therefore, many efforts have been made towards the development of
workflow management systems for Grid computing. In this paper, we propose a
taxonomy that characterizes and classifies various approaches for building and
executing workflows on Grids. We also survey several representative Grid
workflow systems developed by various projects world-wide to demonstrate the
comprehensiveness of the taxonomy. The taxonomy not only highlights the design
and engineering similarities and differences of state-of-the-art in Grid
workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure
The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia
Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies
Remembering what could have happened: Neural correlates of episodic counterfactual thinking
Recent evidence suggests that our capacities to remember the past and to imagine what might happen in the future largely depend on the same core brain network that includes the middle temporal lobe, the posterior cingulate/retrosplenial cortex, the inferior parietal lobe, the medial prefrontal cortex, and the lateral temporal cortex. However, the extent to which regions of this core brain network are also responsible for our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), is still unknown. The present study examined this issue. Using a variation of the experimental recombination paradigm (Addis, Pan, Vu, Laiser, & Schacter, 2009. Neuropsychologia. 47: 2222–2238), participants were asked both to remember personal past events and to envision alternative outcomes to such events while undergoing functional magnetic resonance imaging. Three sets of analyses were performed on the imaging data in order to investigate two related issues. First, a mean-centered spatiotemporal partial least square (PLS) analysis identified a pattern of brain activity across regions of the core network that was common to episodic memory and episodic counterfactual thinking. Second, a non-rotated PLS analysis identified two different patterns of brain activity for likely and unlikely episodic counterfactual thoughts, with the former showing significant overlap with the set of regions engaged during episodic recollection. Finally, a parametric modulation was conducted to explore the differential engagement of brain regions during counterfactual thinking, revealing that areas such as the parahippocampal gyrus and the right hippocampus were modulated by the subjective likelihood of counterfactual simulations. These results suggest that episodic counterfactual thinking engages regions that form the core brain network, and also that the subjective likelihood of our counterfactual thoughts modulates the engagement of different areas within this set of regions.Psycholog
- …
