1,071 research outputs found
Visual Stability of Objects and Environments Viewed through Head-Mounted Displays
Virtual Environments (aka Virtual Reality) is again catching the public imagination and a number of startups (e.g. Oculus) and even not-so-startup companies (e.g. Microsoft) are trying to develop display systems to capitalize on this renewed interest. All acknowledge that this time they will get it right by providing the required dynamic fidelity, visual quality, and interesting content for the concept of VR to take off and change the world in ways it failed to do so in past incarnations. Some of the surprisingly long historical background of the technology that the form of direct simulation that underlies virtual environment and augmented reality displays will be briefly reviewed. An example of a mid 1990's augmented reality display system with good dynamic performance from our lab will be used to illustrate some of the underlying phenomena and technology concerning visual stability of virtual environments and objects during movement. In conclusion some idealized performance characteristics for a reference system will be proposed. Interestingly, many systems more or less on the market now may actually meet many of these proposed technical requirements. This observation leads to the conclusion that the current success of the IT firms trying to commercialize the technology will depend on the hidden costs of using the systems as well as the development of interesting and compelling content
Discontinuity Detection for Analysis of Telerobot Trajectories
To identify spatial and temporal discontinuities in telerobot movement in order to describe the shift in operators control and error correction strategies from continuous control to move-and-wait strategies. This shift was studied under conditions of simulated increasingly time-delayed teleoperation. The ultimate goal is to determine if the time delay associated with the shift is invariant with independently imposed control difficulty. We expect this shift to manifest itself as changes in the number of discontinuity of movement path. We proposed an approach to spatial and temporal discontinuity detection algorithm for analysis of teleoperated trajectory in three dimensional space. The algorithm provides a simple and potentially objective method for detecting the discontinuity during telerobot operation and evaluating the difficulty of rotational coordinate condition in teleoperation
Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions
The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments
Stroboscopic Image Modulation to Reduce the Visual Blur of an Object Being Viewed by an Observer Experiencing Vibration
A method and apparatus for reducing the visual blur of an object being viewed by an observer experiencing vibration. In various embodiments of the present invention, the visual blur is reduced through stroboscopic image modulation (SIM). A SIM device is operated in an alternating "on/off" temporal pattern according to a SIM drive signal (SDS) derived from the vibration being experienced by the observer. A SIM device (controlled by a SIM control system) operates according to the SDS serves to reduce visual blur by "freezing" (or reducing an image's motion to a slow drift) the visual image of the viewed object. In various embodiments, the SIM device is selected from the group consisting of illuminator(s), shutter(s), display control system(s), and combinations of the foregoing (including the use of multiple illuminators, shutters, and display control systems)
An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions
Increasing numbers of galleries, museums and archives are including ink jet printed materials into their collections, and therefore displays. There is evidence that the instability of these prints is such that images can suffer deterioration in print quality or in extreme cases, a loss of information over an extended period of time. This is shorter than the period typically required for perceptible deterioration to occur in many other paper-based artworks. The image stability of prints is affected by a number of factors some of which have already been studied. However the role played by the ink solvent in the loss of image quality has yet to be explored. This paper will outline research being undertaken to investigate the effects of solvent content which may increase/promote the loss in image quality of the hard copy prints when stored or displayed under a range of temperature and humidity conditions
Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites
Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node–islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis
Effects of Transverse Seat Vibration on Near-Viewing Readability of Alphanumeric Symbology
We measured the impacts on human visual function of a range of vibration levels (0.15, 0.3, 0.5, and 0.7 g) at the frequency and along the axis of the anticipated Ares thrust oscillation. We found statistically significant and equivalent decrements in performance on a reading and a numeric processing task at tested vibration levels above 0.3 g (0-to-peak), but no evidence of after-effects. At the smallest font and highest vibration level tested, the average effect was a 50 percent increase in response time and six-fold increase in errors. Our findings support a preliminary trade space in which currently planned Orion font sizes and text spacing appear to be too small to support accurate and efficient reading at the tested vibration levels above 0.3 g, but not too small to support reading at 0.3 g. This study does not address potential impacts on crew cognitive decision-making or motor control and does not test either the full induced Orion-Ares environment with its sustained Gx-loading or the full complexity of the final Orion seat-helmet-suit interface. A final determination of the Orion-Ares program limit on vibration must take these additional factors into consideration and, thus, may need to be lower than that needed to support effective reading at 1-Gx bias
Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project
The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center.
- …
