337 research outputs found
Antinormally Ordered Photodetection of Continuous-mode Field
When the electromagnetic field is detected by stimulated emission, rather
than by absorption, antinormally ordered photodetection can be realized. One of
the distinct features of this photodetection scheme is its sensitivity to
zero-point fluctuation due to the existence of the spontaneous emission. We
have recently succeeded in experimentally demonstrating the antinormally
ordered photodetection by exploiting nondegenerate stimulated parametric
down-conversion process. To properly account for the experiment, the detection
process needs to be treated with time-dependent and continuous-mode operators
because of the broadband nature of the parametric down-conversion process and
the wide spectrum of the pump that we used. Here, we theoretically analyze the
antinormally ordered intensity correlation of the continuous-mode fields by
pursuing the detection process in the Heisenberg picture. It is shown that the
excess positive correlation due to zero-point fluctuation reduces because of
the frequency-distinguishability of the two emitted photon pairs.Comment: 11 pages, 1 figures, to appear in the special issue of Int. J. Quant.
Info. for the NQSI workshop in Kyot
Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light
We present a multimode theory of non-Gaussian operation induced by an
imperfect on/off-type photon detector on a splitted beam from a wideband
squeezed light. The events are defined for finite time duration in the time
domain. The non-Gaussian output state is measured by the homodyne detector with
finite bandwidh . Under this time- and band-limitation to the quantm states,
we develop a formalism to evaluate the frequency mode matching between the
on/off trigger channel and the conditional signal beam in the homodyne channel.
Our formalism is applied to the CW and pulsed schemes. We explicitly calculate
the Wigner function of the conditional non-Gaussian output state in a realistic
situation. Good mode matching is achieved for BT\alt1, where the discreteness
of modes becomes prominant, and only a few modes become dominant both in the
on/off and the homodyne channels. If the trigger beam is projected nearly onto
the single photon state in the most dominant mode in this regime, the most
striking non-classical effect will be observed in the homodyne statistics. The
increase of and the dark counts degrades the non-classical effect.Comment: 20 pages, 14 figures, submitted to Phys. Rev.
Subnanosecond spectral diffusion of a single quantum dot in a nanowire
We have studied spectral diffusion of the photoluminescence of a single CdSe
quantum dot inserted in a ZnSe nanowire. We have measured the characteristic
diffusion time as a function of pumping power and temperature using a recently
developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)]
that offers subnanosecond resolution. These data are consistent with a model
where only a \emph{single} carrier wanders around in traps located in the
vicinity of the quantum dot
Subnanosecond spectral diffusion measurement using photon correlation
Spectral diffusion is a result of random spectral jumps of a narrow line as a
result of a fluctuating environment. It is an important issue in spectroscopy,
because the observed spectral broadening prevents access to the intrinsic line
properties. However, its characteristic parameters provide local information on
the environment of a light emitter embedded in a solid matrix, or moving within
a fluid, leading to numerous applications in physics and biology. We present a
new experimental technique for measuring spectral diffusion based on photon
correlations within a spectral line. Autocorrelation on half of the line and
cross-correlation between the two halves give a quantitative value of the
spectral diffusion time, with a resolution only limited by the correlation
set-up. We have measured spectral diffusion of the photoluminescence of a
single light emitter with a time resolution of 90 ps, exceeding by four orders
of magnitude the best resolution reported to date
Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)
The heteroepitaxy of III-V semiconductors on silicon is a promising approach
for making silicon a photonic platform for on-chip optical interconnects and
quantum optical applications. Monolithic integration of both material systems
is a long-time challenge, since different material properties lead to high
defect densities in the epitaxial layers. In recent years, nanostructures
however have shown to be suitable for successfully realising light emitters on
silicon, taking advantage of their geometry. Facet edges and sidewalls can
minimise or eliminate the formation of dislocations, and due to the reduced
contact area, nanostructures are little affected by dislocation networks. Here
we demonstrate the potential of indium phosphide quantum dots as efficient
light emitters on CMOS-compatible silicon substrates, with luminescence
characteristics comparable to mature devices realised on III-V substrates. For
the first time, electrically driven single-photon emission on silicon is
presented, meeting the wavelength range of silicon avalanche photo diodes'
highest detection efficiency
Single-qubit optical quantum fingerprinting
We analyze and demonstrate the feasibility and superiority of linear optical
single-qubit fingerprinting over its classical counterpart. For one-qubit
fingerprinting of two-bit messages, we prepare `tetrahedral' qubit states
experimentally and show that they meet the requirements for quantum
fingerprinting to exceed the classical capability. We prove that shared
entanglement permits 100% reliable quantum fingerprinting, which will
outperform classical fingerprinting even with arbitrary amounts of shared
randomness.Comment: 4 pages, one figur
Versatile Wideband Balanced Detector for Quantum Optical Homodyne Tomography
We present a comprehensive theory and an easy to follow method for the design
and construction of a wideband homodyne detector for time-domain quantum
measurements. We show how one can evaluate the performance of a detector in a
specific time-domain experiment based on electronic spectral characteristic of
that detector. We then present and characterize a high-performance detector
constructed using inexpensive, commercially available components such as
low-noise high-speed operational amplifiers and high-bandwidth photodiodes. Our
detector shows linear behavior up to a level of over 13 dB clearance between
shot noise and electronic noise, in the range from DC to 100 MHz. The detector
can be used for measuring quantum optical field quadratures both in the
continuous-wave and pulsed regimes with pulse repetition rates up to about 250
MHz.Comment: 11 pages, 8 figures, 1 tabl
A bridge between the single-photon and squeezed-vacuum state
The two modes of the Einstein-Podolsky-Rosen quadrature entangled state
generated by parametric down-conversion interfere on a beam splitter of
variable splitting ratio. Detection of a photon in one of the beam splitter
output channels heralds preparation of a signal state in the other, which is
characterized using homodyne tomography. By controlling the beam splitting
ratio, the signal state can be chosen anywhere between the single-photon and
squeezed state
Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players
Studies report that football players have high blood pressure (BP) and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD) and carotid artery intima-media thickness (IMT). Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm) and larger brachial artery diameter during FMD (4.3 ± 0.5 mm versus 3.7 ± 0.6 mm), but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2 ± 6.4 mmHg versus 122.4 ± 6.8 mmHg), submaximal exercise (150.4 ± 18.8 mmHg versus 137.3 ± 9.5 mmHg), maximal exercise (211.3 ± 25.9 mmHg versus 191.4 ± 19.2 mmHg), and 24-hour BP (124.9 ± 6.3 mmHg versus 109.8 ± 3.7 mmHg). Football players also had higher fasting glucose (91.6 ± 6.5 mg/dL versus 86.6 ± 5.8 mg/dL), lower HDL (36.5±11.2 mg/dL versus 47.1±14.8 mg/dL), and higher body fat percentage (29.2±7.9% versus 23.2±7.0%). Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk
- …
