2,756 research outputs found

    On Dual Formulations of Massive Tensor Fields

    Full text link
    In this paper we investigate dual formulations for massive tensor fields. Usual procedure for construction of such dual formulations based on the use of first order parent Lagrangians in many cases turns out to be ambiguous. We propose to solve such ambiguity by using gauge invariant description of massive fields which works both in Minkowski space as well as (Anti) de Sitter spaces. We illustrate our method by two concrete examples: spin-2 "tetrad" field h_{\mu a}, the dual field being "Lorentz connection" \omega_{\mu,ab} and "Riemann" tensor R_{\mu\nu,ab} with the dual \Sigma_{\mu\nu,abc}.Comment: 9 pages, plain LaTe

    Complete phenomenological gravitational waveforms from spinning coalescing binaries

    Full text link
    The quest for gravitational waves from coalescing binaries is customarily performed by the LIGO-Virgo collaboration via matched filtering, which requires a detailed knowledge of the signal. Complete analytical coalescence waveforms are currently available only for the non-precessing binary systems. In this paper we introduce complete phenomenological waveforms for the dominant quadrupolar mode of generically spinning systems. These waveforms are constructed by bridging the gap between the analytically known inspiral phase, described by spin Taylor (T4) approximants in the restricted waveform approximation, and the ring-down phase through a phenomenological intermediate phase, calibrated by comparison with specific, numerically generated waveforms, describing equal mass systems with dimension-less spin magnitudes equal to 0.6. The overlap integral between numerical and phenomenological waveforms ranges between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v

    Robust vetoes for gravitational-wave burst triggers using known instrumental couplings

    Get PDF
    The search for signatures of transient, unmodelled gravitational-wave (GW) bursts in the data of ground-based interferometric detectors typically uses `excess-power' search methods. One of the most challenging problems in the burst-data-analysis is to distinguish between actual GW bursts and spurious noise transients that trigger the detection algorithms. In this paper, we present a unique and robust strategy to `veto' the instrumental glitches. This method makes use of the phenomenological understanding of the coupling of different detector sub-systems to the main detector output. The main idea behind this method is that the noise at the detector output (channel H) can be projected into two orthogonal directions in the Fourier space -- along, and orthogonal to, the direction in which the noise in an instrumental channel X would couple into H. If a noise transient in the detector output originates from channel X, it leaves the statistics of the noise-component of H orthogonal to X unchanged, which can be verified by a statistical hypothesis testing. This strategy is demonstrated by doing software injections in simulated Gaussian noise. We also formulate a less-rigorous, but computationally inexpensive alternative to the above method. Here, the parameters of the triggers in channel X are compared to the parameters of the triggers in channel H to see whether a trigger in channel H can be `explained' by a trigger in channel X and the measured transfer function.Comment: 14 Pages, 8 Figures, To appear in Class. Quantum Gra

    Physical instrumental vetoes for gravitational-wave burst triggers

    Full text link
    We present a robust strategy to \emph{veto} certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave (GW) detectors.This veto method is `physical' in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be \emph{transferred} to the detector output (channel H) using the \emph{transfer function} from X to H, provided the noise coupling is \emph{linear} and the transfer function is \emph{unique}. If a non-stationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the \emph{null-stream} constructed from channel H and the \emph{transferred} channel X, and the second involves cross-correlating the two. We demonstrate the efficiency of the veto by `injecting' instrumental glitches in the hardware of the GEO 600 detector. The \emph{veto safety} is demonstrated by performing GW-like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.

    Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries

    Get PDF
    We present a new phenomenological gravitational waveform model for the inspiral and coalescence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of non-precessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational wave searches.Comment: 22 pages, 11 figure

    Complete adiabatic waveform templates for a test-mass in the Schwarzschild spacetime: VIRGO and Advanced LIGO studies

    Full text link
    Post-Newtonian expansions of the binding energy and gravitational wave flux truncated at the {\it same relative} post-Newtonian order form the basis of the {\it standard adiabatic} approximation to the phasing of gravitational waves from inspiralling compact binaries. Viewed in terms of the dynamics of the binary, the standard approximation is equivalent to neglecting certain conservative post-Newtonian terms in the acceleration. In an earlier work, we had proposed a new {\it complete adiabatic} approximant constructed from the energy and flux functions. At the leading order it employs the 2PN energy function rather than the 0PN one in the standard approximation, so that, effectively the approximation corresponds to the dynamics where there are no missing post-Newtonian terms in the acceleration. In this paper, we compare the overlaps of the standard and complete adiabatic templates with the exact waveform in the adiabatic approximation of a test-mass motion in the Schwarzschild spacetime, for the VIRGO and the Advanced LIGO noise spectra. It is found that the complete adiabatic approximants lead to a remarkable improvement in the {\it effectualness} at lower PN (<< 3PN) orders, while standard approximants of order \geq 3PN provide a good lower-bound to the complete approximants for the construction of effectual templates. {\it Faithfulness} of complete approximants is better than that of standard approximants except for a few post-Newtonian orders. Standard and complete approximants beyond the adiabatic approximation are also studied using the Lagrangian templates of Buonanno, Chen and Vallisneri.Comment: Proceedings of the GWDAW-9, Accepted for publication in Class. Quant. Gra

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10−18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale
    corecore