743 research outputs found

    Excess Observed in CDF Bs0μ+μB^0_s \to \mu^{+} \mu^{-} and SUSY at the LHC

    Full text link
    The recent excess observed by CDF in Bs0μ+μB^0_s \to \mu^{+} \mu^{-} is interpreted in terms of a possible supersymmetric origin. An analysis is given of the parameter space of mSUGRA and non-universal SUGRA models under the combined constraints from LHC-7 with 165 pb1^{-1} of integrated luminosity, under the new XENON-100 limits on the neutralino-proton spin independent cross section and under the CDF Bs0μ+μB^0_s \to \mu^{+} \mu^{-} 90% C.L. limit reported to arise from an excess number of dimuon events. It is found that the predicted value of the branching ratio Bs0μ+μB^0_s \to \mu^{+} \mu^{-} consistent with all the constraints contains the following set of NLSPs: chargino, stau, stop or CP odd (even) Higgs. The lower bounds of sparticles, including those from the LHC, XENON and CDF Bs0μ+μB^0_s\to \mu^+\mu^- constraint, are exhibited and the shift in the allowed range of sparticle masses arising solely due to the extra constraint from the CDF result is given. It is pointed out that the two sided CDF 90% C.L. limit puts upper bounds on sparticle masses. An analysis of possible signatures for early discovery at the LHC is carried out corresponding to the signal region in Bs0μ+μB^0_s \to \mu^{+} \mu^{-}. Implications of GUT-scale non-universalities in the gaugino and Higgs sectors are discussed. If the excess seen by the CDF Collaboration is supported by further data from LHCb or D0, this new result could be a harbinger for the discovery of supersymmetry.Comment: References added, text update

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Flavor Mediation Delivers Natural SUSY

    Get PDF
    If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to flavor constraints and a little discussion adde

    Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

    Full text link
    If all strongly interacting sparticles (the squarks and the gluinos) in an unconstrained minimal supersymmetric standard model (MSSM) are heavier than the corresponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12% in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (20\approx 20%). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the bljblj\etslash, l=eandμl= e and \mu , and bτjb\tau j\etslash signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowed by the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to appear in JHE

    Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model

    Full text link
    Recent LHC data significantly extend the exclusion limits for supersymmetric particles, particularly in the jets plus missing transverse momentum channels. The most recent such data have so far been interpreted by the experiment in only two different supersymmetry breaking models: the constrained minimal supersymmetric standard model (CMSSM) and a simplified model with only squarks and gluinos and massless neutralinos. We compare kinematical distributions of supersymmetric signal events predicted by the CMSSM and anomaly mediated supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We obtain a lower limit of 900 GeV on squark and gluino masses at the 95% confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure

    Constraints on supersymmetry with light third family from LHC data

    Full text link
    We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE

    Point Prevalence Surveys of Antimicrobial Use among Hospitalized Children in Six Hospitals in India in 2016.

    Get PDF
    The prevalence of antimicrobial resistance in India is among the highest in the world. Antimicrobial use in inpatient settings is an important driver of resistance, but is poorly characterized, particularly in hospitalized children. In this study, conducted as part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) project, we examined the prevalence of and indications of antimicrobial use, as well as antimicrobial agents used among hospitalized children by conducting four point prevalence surveys in six hospitals between February 2016 and February 2017. A total of 681 children were hospitalized in six hospitals across all survey days, and 419 (61.5%) were prescribed one or more antimicrobials (antibacterials, antivirals, antifungals). Antibacterial agents accounted for 90.8% (547/602) of the total antimicrobial prescriptions, of which third-generation cephalosporins (3GCs) accounted for 38.9% (213/547) and penicillin plus enzyme inhibitor combinations accounted for 14.4% (79/547). Lower respiratory tract infection (LRTI) was the most common indication for prescribing antimicrobials (149 prescriptions; 24.8%). Although national guidelines recommend the use of penicillin and combinations as first-line agents for LRTI, 3GCs were the most commonly prescribed antibacterial agents (55/149 LRTI prescriptions; 36.9%). In conclusion, 61.5% of hospitalized children were on at least one antimicrobial agent, with excessive use of 3GCs. Hence there is an opportunity to limit their inappropriate use

    Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.

    Get PDF
    BackgroundAmyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM.ResultsWe find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.ConclusionThese data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished
    corecore