743 research outputs found
Recommended from our members
Techno-Economic Analysis of Hybrid Layered Manufacturing
Subtractive manufacturing (CNC machining) has high quality of geometric and
material properties but is slow, costly and infeasible in some cases; additive
manufacturing (RP) is just the opposite. Total automation and hence speed is
achieved in RP by compromising on quality. Hybrid Layered Manufacturing
(HLM) developed at IIT Bombay combines the best features of both these
approaches. It uses arc welding for building near-net shapes which are finish
machined to final dimensions. High speed of HLM surpasses all other processes
for tool making by eliminating NC programming and rough machining. The
techno-economic viability of HLM process has been proved through a real life
case study. Time and cost of tool making using HLM promises to be substantially
lower than that of CNC machining and other RP methods. Interestingly, the
material cost in HLM was also found to be lower. HLM is a cheaper retrofitment
to any 3 or 5 axis CNC milling machine or machining center.Mechanical Engineerin
Excess Observed in CDF and SUSY at the LHC
The recent excess observed by CDF in is
interpreted in terms of a possible supersymmetric origin. An analysis is given
of the parameter space of mSUGRA and non-universal SUGRA models under the
combined constraints from LHC-7 with 165 pb of integrated luminosity,
under the new XENON-100 limits on the neutralino-proton spin independent cross
section and under the CDF 90% C.L. limit reported
to arise from an excess number of dimuon events. It is found that the predicted
value of the branching ratio consistent with all
the constraints contains the following set of NLSPs: chargino, stau, stop or CP
odd (even) Higgs. The lower bounds of sparticles, including those from the LHC,
XENON and CDF constraint, are exhibited and the shift in
the allowed range of sparticle masses arising solely due to the extra
constraint from the CDF result is given. It is pointed out that the two sided
CDF 90% C.L. limit puts upper bounds on sparticle masses. An analysis of
possible signatures for early discovery at the LHC is carried out corresponding
to the signal region in . Implications of GUT-scale
non-universalities in the gaugino and Higgs sectors are discussed. If the
excess seen by the CDF Collaboration is supported by further data from LHCb or
D0, this new result could be a harbinger for the discovery of supersymmetry.Comment: References added, text update
Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level
We provide a comparative study of the fine tuning amount (Delta) at the
two-loop leading log level in supersymmetric models commonly used in SUSY
searches at the LHC. These are the constrained MSSM (CMSSM), non-universal
Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM)
and GUT related gaugino masses models (NUGMd). Two definitions of the fine
tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt
individual parameters while the second (Delta_q) adds their contribution in
"quadrature". As a direct result of two theoretical constraints (the EW minimum
conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective
prior) of the averaged likelihood (under the priors), under the integral of the
global probability of measuring the data (Bayesian evidence p(D)). For each
model, there is little difference between Delta_q, Delta_{max} in the region
allowed by the data, with similar behaviour as functions of the Higgs, gluino,
stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or
dark matter and g-2 constraints. The analysis has the advantage that by
replacing any of these mass scales or constraints by their latest bounds one
easily infers for each model the value of Delta_q, Delta_{max} or vice versa.
For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with
a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in
the CMSSM this is actually a global minimum. Due to a strong (
exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV,
the above values of Delta_q\approx Delta_{max} increase to between 500 and
1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section
2
Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results
We study the fine tuning in the parameter space of the semi-constrained
NMSSM, where most soft Susy breaking parameters are universal at the GUT scale.
We discuss the dependence of the fine tuning on the soft Susy breaking
parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios
involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays.
Whereas these latter scenarios allow a priori for considerably less fine tuning
than the constrained MSSM, the early LHC results rule out a large part of the
parameter space of the semi-constrained NMSSM corresponding to low values of
the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include
Flavor Mediation Delivers Natural SUSY
If supersymmetry (SUSY) solves the hierarchy problem, then naturalness
considerations coupled with recent LHC bounds require non-trivial superpartner
flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy
between scalars of the third and first two generations as well as degeneracy
(or alignment) among the first two generations. In this work, we show how this
specific beyond the standard model (SM) flavor structure can be tied directly
to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3)
flavor symmetry, broken only by Yukawa couplings. By gauging this flavor
symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via
(Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum.
Third-generation scalar masses are suppressed due to the dominant breaking of
the flavor gauge symmetry in the top direction. More subtly, the
first-two-generation scalars remain highly degenerate due to a custodial U(2)
symmetry, where the SU(2) factor arises because SU(3) is rank two. This
custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling
unification predictions are preserved, since no new charged matter is
introduced, the SM gauge structure is unaltered, and the flavor symmetry treats
all matter multiplets equally. Moreover, the uniqueness of the anomaly-free
SU(3) flavor group makes possible a number of concrete predictions for the
superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to
flavor constraints and a little discussion adde
Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals
If all strongly interacting sparticles (the squarks and the gluinos) in an
unconstrained minimal supersymmetric standard model (MSSM) are heavier than the
corresponding mass lower limits in the minimal supergravity (mSUGRA) model,
obtained by the current LHC experiments, then the existing data allow a variety
of electroweak (EW) sectors with light sparticles yielding dark matter (DM)
relic density allowed by the WMAP data. Some of the sparticles may lie just
above the existing lower bounds from LEP and lead to many novel DM producing
mechanisms not common in mSUGRA. This is illustrated by revisiting the above
squark-gluino mass limits obtained by the ATLAS Collaboration, with an
unconstrained EW sector with masses not correlated with the strong sector.
Using their selection criteria and the corresponding cross section limits, we
find at the generator level using Pythia, that the changes in the mass limits,
if any, are by at most 10-12% in most scenarios. In some cases, however, the
relaxation of the gluino mass limits are larger (). If a subset of
the strongly interacting sparticles in an unconstrained MSSM are within the
reach of the LHC, then signals sensitive to the EW sector may be obtained. This
is illustrated by simulating the \etslash, , and \etslash signals in i) the light stop scenario and ii) the light
stop-gluino scenario with various light EW sectors allowed by the WMAP data.
Some of the more general models may be realized with non-universal scalar and
gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to
appear in JHE
Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model
Recent LHC data significantly extend the exclusion limits for supersymmetric
particles, particularly in the jets plus missing transverse momentum channels.
The most recent such data have so far been interpreted by the experiment in
only two different supersymmetry breaking models: the constrained minimal
supersymmetric standard model (CMSSM) and a simplified model with only squarks
and gluinos and massless neutralinos. We compare kinematical distributions of
supersymmetric signal events predicted by the CMSSM and anomaly mediated
supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We
obtain a lower limit of 900 GeV on squark and gluino masses at the 95%
confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure
Constraints on supersymmetry with light third family from LHC data
We present a re-interpretation of the recent ATLAS limits on supersymmetry in
channels with jets (with and without b-tags) and missing energy, in the context
of light third family squarks, while the first two squark families are
inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast
to interpretations in terms of the high-scale based constrained minimal
supersymmetric standard model (CMSSM), we primarily use the low-scale
parametrisation of the phenomenological MSSM (pMSSM), and translate the limits
in terms of physical masses of the third family squarks. Side by side, we also
investigate the limits in terms of high-scale scalar non-universality, both
with and without low-mass sleptons. Our conclusion is that the limits based on
0-lepton channels are not altered by the mass-scale of sleptons, and can be
considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE
Point Prevalence Surveys of Antimicrobial Use among Hospitalized Children in Six Hospitals in India in 2016.
The prevalence of antimicrobial resistance in India is among the highest in the world. Antimicrobial use in inpatient settings is an important driver of resistance, but is poorly characterized, particularly in hospitalized children. In this study, conducted as part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) project, we examined the prevalence of and indications of antimicrobial use, as well as antimicrobial agents used among hospitalized children by conducting four point prevalence surveys in six hospitals between February 2016 and February 2017. A total of 681 children were hospitalized in six hospitals across all survey days, and 419 (61.5%) were prescribed one or more antimicrobials (antibacterials, antivirals, antifungals). Antibacterial agents accounted for 90.8% (547/602) of the total antimicrobial prescriptions, of which third-generation cephalosporins (3GCs) accounted for 38.9% (213/547) and penicillin plus enzyme inhibitor combinations accounted for 14.4% (79/547). Lower respiratory tract infection (LRTI) was the most common indication for prescribing antimicrobials (149 prescriptions; 24.8%). Although national guidelines recommend the use of penicillin and combinations as first-line agents for LRTI, 3GCs were the most commonly prescribed antibacterial agents (55/149 LRTI prescriptions; 36.9%). In conclusion, 61.5% of hospitalized children were on at least one antimicrobial agent, with excessive use of 3GCs. Hence there is an opportunity to limit their inappropriate use
Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.
BackgroundAmyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM.ResultsWe find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.ConclusionThese data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished
- …
