292 research outputs found
Lung Rest During Extracorporeal Membrane Oxygenation for Neonatal Respiratory Failure-Practice Variations and Outcomes.
OBJECTIVE: Describe practice variations in ventilator strategies used for lung rest during extracorporeal membrane oxygenation for respiratory failure in neonates, and assess the potential impact of various lung rest strategies on the duration of extracorporeal membrane oxygenation and the duration of mechanical ventilation after decannulation.
DATA SOURCES: Retrospective cohort analysis from the Extracorporeal Life Support Organization registry database during the years 2008-2013.
STUDY SELECTION: All extracorporeal membrane oxygenation runs for infants less than or equal to 30 days of life for pulmonary reasons were included.
DATA EXTRACTION: Ventilator type and ventilator settings used for lung rest at 24 hours after extracorporeal membrane oxygenation initiation were obtained.
DATA SYNTHESIS: A total of 3,040 cases met inclusion criteria. Conventional mechanical ventilation was used for lung rest in 88% of cases and high frequency ventilation was used in 12%. In the conventional mechanical ventilation group, 32% used positive end-expiratory pressure strategy of 4-6 cm H2O (low), 22% used 7-9 cm H2O (mid), and 43% used 10-12 cm H2O (high). High frequency ventilation was associated with an increased mean (SEM) hours of extracorporeal membrane oxygenation (150.2 [0.05] vs 125 [0.02]; p \u3c 0.001) and an increased mean (SEM) hours of mechanical ventilation after decannulation (135 [0.09] vs 100.2 [0.03]; p = 0.002), compared with conventional mechanical ventilation among survivors. Within the conventional mechanical ventilation group, use of higher positive end-expiratory pressure was associated with a decreased mean (SEM) hours of extracorporeal membrane oxygenation (high vs low: 136 [1.06] vs 156 [1.06], p = 0.001; mid vs low: 141 [1.06] vs 156 [1.06]; p = 0.04) but increased duration of mechanical ventilation after decannulation in the high positive end-expiratory pressure group compared with low positive end-expiratory pressure (p = 0.04) among survivors.
CONCLUSIONS: Wide practice variation exists with regard to ventilator settings used for lung rest during neonatal respiratory extracorporeal membrane oxygenation. Use of high frequency ventilation when compared with conventional mechanical ventilation and use of low positive end-expiratory pressure strategy when compared with mid positive end-expiratory pressure and high positive end-expiratory pressure strategy is associated with longer duration of extracorporeal membrane oxygenation. Further research to provide evidence to drive optimization of pulmonary management during neonatal respiratory extracorporeal membrane oxygenation is warranted
Various forms of tobacco usage and its associated oral mucosal lesions
Background: To study the various forms of tobacco usage and its associated oral mucosal lesions among the patients attending Vishnu Dental College Bhimavaram.
Material and Methods: An observational cross-sectional study was conducted in a total of 450 patients who were
divided into three groups based upon type of tobacco use, as Group-1 Reverse smoking, Group-2 Conventional
smoking, Group-3 Smokeless tobacco group and each group consists of 150 subjects.
Results: Reverse smoking was observed to be more prevalent among old females with smoker’s palate and carcinomatous lesions being the most common. Conventional smoking was observed more in male patients with maximum
occurrence of leukoplakia and tobacco associated melanosis. Smokeless tobacco habit was predominantly seen in
younger males. Habit specific lesions like tobacco pouch keratosis, Oral Submucous Fibrosis (OSMF), Quid induced lichenoid reaction were noticed in smokeless tobacco habit group except for erythroplakia which was noticed
only in conventional smoking group and it was not significant statistically
.
Conclusions: In the present study it was found that the usage of reverse smoking habit was most commonly seen
in females and this habit is practiced in and surrounding areas of Bhimavaram with more occurrence of carcinoma
compared to conventional smoking and smokeless tobacco
Optical parameter measurements of a nO.m liquid crystalline compound
Differential scanning calorimetry (DSC) and density studies for a Schiff’s base liquid crystalline nO.m compound N (4 - n - hexyloxybenzylidine) 4´- m - hexylaniline (6O.6) have been carried out. Using the previously reported refractive index data and present density data, the molecular polarizability values for the sample have been obtained. Vuks’ method and Neugebauer’s method have been used to calculate the parallel and perpendicular components of molecular polarizabilities. The calculation of order parameters have been previously done using direct extrapolation method and modified Vuks’ method from the measured refractive indices. The order parameters of the sample have been calculated using the refractive indices and density values following Vuks’ method and Neugebauer’s method. The results obtained have been compared and analysed in detail
Hydrogenation properties of lithium and sodium hydride – closo-borate, [B10H10]2− and [B12H12]2−, composites
© 2018 the Owner Societies. The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar.11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4or NaBH4and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10(M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2-composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage
A Comparative Analysis of Anterior & Lateral Cranial Base CSF Leaks
Introduction
The optimal strategy for management of Idiopathic Intracranial Hypertension (IIH) in anterior and lateral cranial base meningoencephaloceles remains debated. The purpose of this study is to present a comparison of the surgical management of anterior and lateral cranial base meningoencephalocele and a treatment algorithm for the diagnosis and management of IIH in this patient population.
Methods
Retrospective study of 109 patients who underwent anterior or lateral CSF leak repair at TJU from 2004-2020. Epic & RedCap were utilized to record data. Patient demographics, presenting symptoms, imaging, Beta-2 Transferring testing, surgery, repair, and post-op data were collected. Two-sided Chi-squared tests and Independent t-test were performed via SPSS Statistics 26.
Results
49 anterior cranial base (ACB) and 60 lateral cranial base (LCB) defects were included. Anterior cohort had significantly more women (N=77, 85.7%, p=0.02).
Anterior cohort presented with significantly higher multiple leak sites (24.5% vs 15.0%, p=0.036). Six patients, 3 in each cohort, none of whom received Ventriculoperitoneal shunts (VPS) developed recurrence.
VPS were placed for long-term CSF diversion in 23 ACB cases (46.9%) and 10 LCB cases (16.7%), (p\u3c0.01).
Discussion
ACB cases had a higher incidence of females, multiple site leaks, and more likely to undergo VPS placement. No patients developed recurrence after placement of a VPS. Long-term CSF diversion via VPS, in addition to surgical repair, should be considered in patients with elevated intracranial pressure and other high-risk factors to prevent recurrence of CSF leaks
Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6
Background: Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV.
Methods:
We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619.
Results:
OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV.
Conclusion:
These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG
Downregulation of uPAR and Cathepsin B Induces Apoptosis via Regulation of Bcl-2 and Bax and Inhibition of the PI3K/Akt Pathway in Gliomas
Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes.In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU)-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results.In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas
Co-Depletion of Cathepsin B and uPAR Induces G0/G1 Arrest in Glioma via FOXO3a Mediated p27Kip1 Upregulation
Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of these molecules on cell cycle progression has not been thoroughly examined.Cathepsin B and uPAR single and bicistronic siRNA plasmids were used to downregulate these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated increased expression of p27(Kip1) and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects could be mediated by alphaVbeta3/PI3K/AKT/FOXO pathway as observed by the decreased alphaVbeta3 expression, PI3K and AKT phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased expression of p27(Kip1) and FOXO3a when treated with Ly294002 (10 microM) and increased luciferase expression with the siRNA and Ly294002 treatments when the FOXO binding promoter region of p27(Kip1) was used. Our treatment also reduced the expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E complex formation was reduced significantly.Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating the PI3K/AKT signaling pathway and further increases expression of p27(Kip1) accompanied by the binding of FOXO3a to its promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation of cathepsin B and uPAR in SNB19 and U251 glioma cells
Root Canal Anatomy of Maxillary and Mandibular Teeth
It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio
- …
